橢圓的焦點為,點在橢圓上,且線段的中點恰好在軸上,,則            .

試題分析:易知,原點也是的中點,所以平行于軸,因為,所以,
設(shè),根據(jù)橢圓定義可知,所以,解得,所以,故,所以7.
點評:本題重點考查橢圓的幾何性質(zhì),考查橢圓定義的應(yīng)用,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的左、右焦點分別為、,P為橢圓 上任意一點,且的最小值為.
(1)求橢圓的方程;
(2)動圓與橢圓相交于A、B、C、D四點,當(dāng)為何值時,矩形ABCD的面積取得最大值?并求出其最大面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的左右焦點坐標(biāo)分別是,離心率,直線與橢圓交于不同的兩點.
(1)求橢圓的方程;
(2)求弦的長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知橢圓的左焦點為F
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)F1、F2是橢圓E:的左、右焦點,P為直線上一點,△F2PF1是底角為30°的等腰三角形,則E的離心率為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知橢圓的左焦點為,過點的直線交橢圓于兩點,線段的中點為,的中垂線與軸和軸分別交于兩點.

(1)若點的橫坐標(biāo)為,求直線的斜率;
(2)記△的面積為,△為原點)的面積為.試問:是否存在直線,使得?說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知在平面直角坐標(biāo)系中的一個橢圓,它的中心在原點,左焦點為,右頂點為,設(shè)點.
(1)求該橢圓的標(biāo)準(zhǔn)方程;
(2)若是橢圓上的動點,求線段中點的軌跡方程;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

過橢圓的右焦點的直線交橢圓于于兩點,令,則

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè),是橢圓的兩個焦點,點在橢圓上,且,則△ 的面積為          .

查看答案和解析>>

同步練習(xí)冊答案