已知橢圓的左右焦點(diǎn)坐標(biāo)分別是,離心率,直線與橢圓交于不同的兩點(diǎn).
(1)求橢圓的方程;
(2)求弦的長(zhǎng)度.
(1)。(2)。

試題分析:
思路分析:(1)利用“待定系數(shù)法”設(shè)橢圓的方程為,進(jìn)一步確定b。
(2)建立方程組,消去,并整理得,應(yīng)用韋達(dá)定理及弦長(zhǎng)公式。
解:(1)依題意可設(shè)橢圓的方程為        1分
,解得                 3分
                    5分
橢圓的方程為                      6分
(2)設(shè)                  7分
聯(lián)立方程,消去,
并整理得:        9分
                              10分

        12分
                         13分
點(diǎn)評(píng):中檔題,確定橢圓的標(biāo)準(zhǔn)方程,一般利用“待定系數(shù)法”,由a,b,c,e的關(guān)系,建立方程組。涉及直線與橢圓的位置關(guān)系,往往通過(guò)聯(lián)立方程組,應(yīng)用韋達(dá)定理,簡(jiǎn)化解題過(guò)程。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知、分別是橢圓: 的左、右焦點(diǎn),點(diǎn)在直線上,線段的垂直平分線經(jīng)過(guò)點(diǎn).直線與橢圓交于不同的兩點(diǎn),且橢圓上存在點(diǎn),使,其中是坐標(biāo)原點(diǎn),是實(shí)數(shù).
(Ⅰ)求的取值范圍;
(Ⅱ)當(dāng)取何值時(shí),的面積最大?最大面積等于多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓的離心率為,直線:與以原點(diǎn)為圓心、以橢圓的短半軸長(zhǎng)為半徑的圓相切.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)橢圓的左焦點(diǎn)為,右焦點(diǎn),直線過(guò)點(diǎn)且垂直于橢圓的長(zhǎng)軸,動(dòng)直線垂直于點(diǎn),
線段垂直平分線交于點(diǎn),求點(diǎn)的軌跡的方程;
(Ⅲ)設(shè)軸交于點(diǎn),不同的兩點(diǎn)上,且滿足,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓的焦點(diǎn)在軸上,離心率,且經(jīng)過(guò)點(diǎn).
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)斜率為的直線與橢圓相交于兩點(diǎn),求證:直線的傾斜角互補(bǔ).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,是橢圓在第一象限上的動(dòng)點(diǎn),是橢圓的焦點(diǎn),的平分線上的一點(diǎn),且,則的取值范圍是         .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

橢圓的左、右焦點(diǎn)分別為F1、F2,P是橢圓上的一點(diǎn),,且,垂足為,若四邊形為平行四邊形,則橢圓的離心率的取值范圍是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)橢圓的左焦點(diǎn)為F, 離心率為, 過(guò)點(diǎn)F且與x軸垂直的直線被橢圓截得的線段長(zhǎng)為.
(Ⅰ) 求橢圓的方程;
(Ⅱ) 設(shè)A, B分別為橢圓的左右頂點(diǎn), 過(guò)點(diǎn)F且斜率為k的直線與橢圓交于C, D兩點(diǎn). 若, 求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

橢圓的焦點(diǎn)為,點(diǎn)在橢圓上,且線段的中點(diǎn)恰好在軸上,,則            .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知曲線上任意一點(diǎn)到兩個(gè)定點(diǎn)的距離之和為4.
(1)求曲線的方程;
(2)設(shè)過(guò)(0,-2)的直線與曲線交于兩點(diǎn),且為原點(diǎn)),求直線的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案