【題目】預(yù)計(jì)某地區(qū)明年從年初開始的前 個(gè)月內(nèi),對某種商品的需求總量 (萬件)近似滿足: ,且 )
(1)寫出明年第 個(gè)月的需求量 (萬件)與月份 的函數(shù)關(guān)系式,并求出哪個(gè)月份的需求量超過 萬件;
(2)如果將該商品每月都投放到該地區(qū) 萬件(不包含積壓商品),要保證每月都滿足供應(yīng), 應(yīng)至少為多少萬件?(積壓商品轉(zhuǎn)入下月繼續(xù)銷售)
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,網(wǎng)格紙上小正方形的邊長為1,粗線畫出的是某個(gè)四面體的三視圖,則該四面體的表面積為( )
A.8+8 +4
B.8+8 +2
C.2+2 +
D. + +
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù), (其中, ),且函數(shù)的圖象在點(diǎn)處的切線與函數(shù)的圖象在點(diǎn)處的切線重合.
(1)求實(shí)數(shù), 的值;
(2)記函數(shù),是否存在最小的正常數(shù),使得當(dāng)時(shí),對于任意正實(shí)數(shù),不等式恒成立?給出你的結(jié)論,并說明結(jié)論的合理性.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的前n項(xiàng)和Sn=n2﹣n,數(shù)列{bn}的前n項(xiàng)和Tn=4﹣bn .
(1)求數(shù)列{an}和{bn}的通項(xiàng)公式;
(2)設(shè)cn= anbn , 求數(shù)列{cn}的前n項(xiàng)和Rn的表達(dá)式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)△ABC的內(nèi)角A、B、C所對的邊分別為a、b、c,已知a=1,b=2,cosC=
(1)求△ABC的周長;
(2)求cos(A﹣C)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐的底面是正方形,每條側(cè)棱的長都是底面邊長的倍,為側(cè)棱上的點(diǎn).
(1)求證:.
(2)若⊥平面,求二面角的大小.
(3)在(2)的條件下,側(cè)棱SC上是否存在一點(diǎn)E,使得BE∥平面PAC?若存在,求SE∶EC的值;若不存在,試說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】當(dāng) 時(shí),不等式 恒成立,則實(shí)數(shù)a的取值范圍是( )
A.[-5,-3]
B.[-6,1]
C.[-6,-2]
D.[-4,-3]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,直三棱柱中, , 為的中點(diǎn), 為的中點(diǎn).
(1)求證: 面;
(2)若面,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知曲線和定點(diǎn), 是此曲線的左、右焦點(diǎn),以原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系.
(1)求直線的極坐標(biāo)方程;
(2)經(jīng)過點(diǎn)且與直線垂直的直線交此圓錐曲線于兩點(diǎn),求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com