【題目】已知函數(shù).

(1)設.

①若,曲線處的切線過點,求的值;

②若,求在區(qū)間上的最大值.

(2)設 兩處取得極值,求證: 不同時成立.

【答案】(1).②的最大值為0.(2)見解析.

【解析】(1)根據(jù)題意,在①中,利用導數(shù)的幾何意義求出切線方程,再將點代入即求出的值,在②中,通過函數(shù)的導數(shù)來研究其單調(diào)性,并求出其極值,再比較端點值,從而求出最大值;(2)由題意可采用反證法進行證明,假設問題成立,再利用函數(shù)的導數(shù)來判斷函數(shù)的單調(diào)性,證明其結果與假設產(chǎn)生矛盾,從而問題可得證.

試題解析:(1)當時, .

①若,則,

從而,

故曲線處的切線方程為 .

將點代入上式并整理得 ,

解得.

②若,則令,解得.

(。┤,則當時, ,

所以為區(qū)間上的增函數(shù),

從而的最大值為.

(ii)若,列表:

所以的最大值為.

綜上, 的最大值為0.

(2)假設存在實數(shù),使得同時成立.

不妨設,則.

因為, 的兩個極值點,

所以 .

因為,所以當時, ,

為區(qū)間上的減函數(shù),

從而,這與矛盾,

故假設不成立.

既不存在實數(shù), ,使得 同時成立.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在平面直角坐標系中,已知曲線的方程為為參數(shù)),以坐標原點為極點, 軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為).

(1)求曲線的普通方程和曲線的直角坐標方程;

(2)曲線上有3個點到曲線的距離等于1,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為調(diào)查某地區(qū)老人是否需要志愿者提供幫助,用簡單隨機抽樣方法從該地區(qū)調(diào)查了500位老年人,結果如下:

(Ⅰ)估計該地區(qū)老年人中,需要志愿者提供幫助的老年人的比例;

(Ⅱ)能否有的把握認為該地區(qū)的老年人是否需要志愿者提供幫助與性別有關?

(Ⅲ)根據(jù)(Ⅱ)的結論,能否提供更好的調(diào)查方法來估計該地區(qū)的老年人中,需要志愿者提供幫助的老年人的比例?說明理由.

附:

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)處的切線經(jīng)過點

(1)討論函數(shù)的單調(diào)性;

(2)若不等式恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在某次水下科研考察活動中,需要潛水員潛入水深為60米的水底進行作業(yè),根據(jù)已往經(jīng)驗,潛水員下潛的平均速度為(米/單位時間),每單位時間的用氧量為(升),在水底作業(yè)10個單位時間,每單位時間用氧量為(升),返回水面的平均速度為(米/單位時間),每單位時間用氧量為(升),記該潛水員在此次考察活動中的總用氧量為(升).

(1)求關于的函數(shù)關系式;

(2)若,求當下潛速度取什么值時,總用氧量最少.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】從集合中,抽取三個不同的元素構成子集.

(1)求對任意的滿足的概率;

(2)若成等差數(shù)列,設其公差為,求隨機變量的分布列與數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知城和城相距,現(xiàn)計劃以為直徑的半圓上選擇一點(不與點, 重合)建造垃圾處理廠.垃圾處理廠對城市的影響度與所選地點到城市的距離有關,對城和城的總影響度為對城與城的影響度之和.記點到的距離為,建在處的垃圾處理廠對城和城的總影響度為.統(tǒng)計調(diào)查表明:垃圾處理廠對城的影響度與所選地點到城的距離的平方成反比例關系,比例系數(shù)為4;對城的影響度與所選地點到城的距離的平方成反比例關系,比例系數(shù)為.當垃圾處理廠建在的中點時,對城和城的總影響度為0.065.

(1)將表示成的函數(shù).

(2)討論(1)中函數(shù)的單調(diào)性,并判斷在上是否存在一點,使建在此處的垃圾處理廠對城和城的總影響度最小?若存在,求出該點到城的距離;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】國內(nèi)某汽車品牌一個月內(nèi)被消費者投訴的次數(shù)用表示,據(jù)統(tǒng)計,隨機變量的概率分布如下:

(1)求的值;

(2)假設一月與二月被消費者投訴的次數(shù)互不影響,求該汽車品牌在這兩個月內(nèi)被消費者投訴次的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在平面直角坐標系中,直線的參數(shù)方程為為參數(shù)).它與曲線交于兩點.

(1)求的長;

(2)在以為極點, 軸的正半軸為極軸建立極坐標系,設點的極坐標為,求點到線段中點的距離.

查看答案和解析>>

同步練習冊答案