【題目】已知函數(shù) ,(為自然對(duì)數(shù)的底數(shù))
(I)若在上單調(diào)遞減,求的最大值;
(Ⅱ)當(dāng)時(shí),證明:.
【答案】(I)2;(Ⅱ)證明見解析.
【解析】
(Ⅰ)由題意得對(duì)恒成立,即對(duì)恒成立,設(shè),則對(duì)于恒成立,由,得,然后再驗(yàn)證時(shí)成立即可得到所求.(Ⅱ)結(jié)合(Ⅰ)可得當(dāng)時(shí),單調(diào)遞減,且, 故當(dāng)時(shí),,整理得.然后再證明成立,最后將兩不等式相加可得所證不等式.
(Ⅰ)由,得.
∵在上單調(diào)遞減,
∴對(duì)恒成立,
即對(duì)恒成立,
設(shè),則對(duì)于恒成立.
則,
∴,
當(dāng)時(shí),,且單調(diào)遞增, ,
∴當(dāng),,單調(diào)遞減;當(dāng),,單調(diào)遞增.
∴,即恒成立,
∴的最大值為2.
(Ⅱ)當(dāng)時(shí),單調(diào)遞減,且,
當(dāng)時(shí),,即,
∴,
∴, ①
下面證明, ②
令,則,
∴在區(qū)間上單調(diào)遞增,
∴,故②成立.
由①+②得成立.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)
(I)求函數(shù)f(x)的單調(diào)區(qū)間;
(II)若,求證:時(shí),.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某書店銷售剛剛上市的某高二數(shù)學(xué)單元測(cè)試卷,按事先擬定的價(jià)格進(jìn)行5天試銷,每種單價(jià)試銷1天,得到如下數(shù)據(jù):
單價(jià)x/元 | 18 | 19 | 20 | 21 | 22 |
銷量y/冊(cè) | 61 | 56 | 50 | 48 | 45 |
(1)求試銷天的銷量的方差和關(guān)于的回歸直線方程;
附: .
(2)預(yù)計(jì)以后的銷售中,銷量與單價(jià)服從上題中的回歸直線方程,已知每?jī)?cè)單元測(cè)試卷的成本是10元,為了獲得最大利潤(rùn),該單元測(cè)試卷的單價(jià)應(yīng)定為多少元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),函數(shù).
⑴若的定義域?yàn)?/span>,求實(shí)數(shù)的取值范圍;
⑵當(dāng),求函數(shù)的最小值;
⑶是否存在實(shí)數(shù),使得函數(shù)的定義域?yàn)?/span>,值域?yàn)?/span>?若存在,求出的值;若不存在,則說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖四棱錐中,底面,是邊長(zhǎng)為2的等邊三角形,且,,點(diǎn)是棱上的動(dòng)點(diǎn).
(I)求證:平面平面;
(Ⅱ)當(dāng)線段最小時(shí),求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《孫子算經(jīng)》是中國(guó)古代重要的數(shù)學(xué)著作.其中的一道題“今有木,方三尺,高三尺,欲方五寸作枕一枚.問:得幾何?”意思是:“有一塊棱長(zhǎng)為3尺的正方體方木,要把它作成邊長(zhǎng)為5寸的正方體枕頭,可作多少個(gè)?”現(xiàn)有這樣的一個(gè)正方體木料,其外周已涂上油漆,則從切割后的正方體枕頭中任取一塊,恰有一面涂上油漆的概率為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線:交雙曲線:于,兩點(diǎn),過作直線的垂線交雙曲線于點(diǎn).若,則雙曲線的離心率為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校命制了一套調(diào)查問卷(試卷滿分均為100分),并對(duì)整個(gè)學(xué)校的學(xué)生進(jìn)行了測(cè)試,先從這些學(xué)生的成績(jī)中隨機(jī)抽取了50名學(xué)生的成績(jī),按照分成5組,制成了如圖所示的頻率分布直方圖(假定每名學(xué)生的成績(jī)均不低于50分)
(1)求頻率分布直方圖中的的值,并估計(jì)50名學(xué)生的成績(jī)的平均數(shù)、中位數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值代表)
(2)用樣本估計(jì)總體,若該校共有2000名學(xué)生,試估計(jì)該校這次成績(jī)不低于70分的人數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com