【題目】已知F2、F1是雙曲線 (a>0,b>0)的上、下焦點(diǎn),點(diǎn)F2關(guān)于漸近線的對稱點(diǎn)恰好落在以F1為圓心,|OF1|為半徑的圓上,則雙曲線的離心率為( )
A.3
B.
C.2
D.
【答案】C
【解析】解:由題意,F(xiàn)1(0,﹣c),F(xiàn)2(0,c),
一條漸近線方程為y= x,則F2到漸近線的距離為 =b.
設(shè)F2關(guān)于漸近線的對稱點(diǎn)為M,F(xiàn)2M與漸近線交于A,
∴|MF2|=2b,A為F2M的中點(diǎn),
又0是F1F2的中點(diǎn),∴OA∥F1M,∴∠F1MF2為直角,
∴△MF1F2為直角三角形,
∴由勾股定理得4c2=c2+4b2
∴3c2=4(c2﹣a2),∴c2=4a2 ,
∴c=2a,∴e=2.
故選C.
首先求出F2到漸近線的距離,利用F2關(guān)于漸近線的對稱點(diǎn)恰落在以F1為圓心,|OF1|為半徑的圓上,可得直角三角形MF1F2 , 運(yùn)用勾股定理,即可求出雙曲線的離心率.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)()
(1)若在區(qū)間[0,1]上有最大值1和最小值-2.求a,b的值;
(2)在(1)條件下,若在區(qū)間上,不等式f(x) 恒成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,直角梯形中, , , , , 底面, 底面且有.
(1)求證: ;
(2)若線段的中點(diǎn)為,求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC的角平分線AD的延長線交它的外接圓于點(diǎn)E.
(1)證明:△ABE∽△ADC;
(2)若△ABC的面積S= ADAE,求∠BAC的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),將的圖象向右平移兩個單位長度,得到函數(shù)的圖象.
(1)求函數(shù)的解析式;
(2)若方程在上有且僅有一個實(shí)根,求的取值范圍;
(3)若函數(shù)與的圖象關(guān)于直線對稱,設(shè),已知對任意的恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2018年3月山東省高考改革實(shí)施方案發(fā)布:2020年夏季高考開始全省高考考生總成績將由語文、數(shù)學(xué)、外語三門統(tǒng)一高考成績和學(xué)生自主選擇的普通高中學(xué)業(yè)水平等級性考試科目的成績共同構(gòu)成.省教育廳為了解正就讀高中的學(xué)生家長對高考改革方案所持的贊成態(tài)度,隨機(jī)從中抽取了100名城鄉(xiāng)家長作為樣本進(jìn)行調(diào)查,調(diào)查結(jié)果顯示樣本中有25人持不贊成意見.右面是根據(jù)樣本的調(diào)查結(jié)果繪制的等高條形圖.
(Ⅰ)請根據(jù)已知條件與等高條形圖完成下面的列聯(lián)表:
贊成 | 不贊成 | 合計 | |
城鎮(zhèn)居民 | |||
農(nóng)村居民 | |||
合計 |
(Ⅱ)試判斷我們是否有95%的把握認(rèn)為“贊成高考改革方案與城鄉(xiāng)戶口有關(guān)”?.
【附】,其中.
0.150 | 0.100 | 0.050 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司試銷一種成本單價為500元/件的新產(chǎn)品,規(guī)定試銷時銷售單價不低于成本單價,又不高于800元/件.經(jīng)試銷調(diào)查,發(fā)現(xiàn)銷售量(件)與銷售單價(元/件)可近似看作一次函數(shù)的關(guān)系(如圖所示).
(1)由圖象,求函數(shù)的表達(dá)式;
(2)設(shè)公司獲得的毛利潤(毛利潤=銷售總價﹣成本總價)為元.試用銷售單價表示毛利潤,并求銷售單價定為多少時,該公司獲得最大毛利潤?最大毛利潤是多少?此時的銷售量是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,正三棱柱ABC-A1B1C1的所有棱長都為2,D為CC1中點(diǎn).
(1)求證:AB1⊥平面A1BD;
(2)求銳二面角A-A1D-B的余弦值;
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com