【題目】已知.
(1)求的單調(diào)區(qū)間;
(2)若,恒有成立,求的取值范圍.
【答案】(1)在和上單調(diào)遞減(2)
【解析】
(1)求導后可得,令,求導后可得的單調(diào)性,進而可得,即可得解;
(2)設(shè),求導后可得,令,對求導后可得,按照、分類討論即可得解.
(1)的定義域為,,
令,則,
注意到的定義域為,
因此在上單調(diào)遞增,在上單調(diào)遞減,
即,即恒成立,
從而在和上單調(diào)遞減.
(2)不等式等價于,設(shè),
則,
設(shè),則,
注意到單調(diào)遞增,且,
當時,,故單調(diào)遞增,
從而,
取,
則,
故,使得,從而在上單調(diào)遞減,
故當時,,與題設(shè)矛盾;
令,則,
則在上單調(diào)遞增,所以,
所以在上成立,
當時,由可知:
,
注意到,則恒成立,
因此單調(diào)遞增,從而,恒有,符合題意.
綜上可知,的取值范圍為.
科目:高中數(shù)學 來源: 題型:
【題目】某研究機構(gòu)為了解某學校學生使用手機的情況,在該校隨機抽取了60名學生(其中男、女生人數(shù)之比為2:1)進行問卷調(diào)查.進行統(tǒng)計后將這60名學生按男、女分為兩組,再將每組學生每天使用手機的時間(單位:分鐘)分為5組,得到如圖所示的頻率分布直方圖(所抽取的學生每天使用手機的時間均不超過50分鐘).
(1)求出女生組頻率分布直方圖中的值;
(2)求抽取的60名學生中每天使用手機時間不少于30分鐘的學生人數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an}滿足:a1+a2+a3+…+an=n-an,(n=1,2,3,…)
(Ⅰ)求證:數(shù)列{an-1}是等比數(shù)列;
(Ⅱ)令bn=(2-n)(an-1)(n=1,2,3,…),如果對任意n∈N*,都有bn+t≤t2,求實數(shù)t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】有人玩擲均勻硬幣走跳棋的游戲,棋盤上標有第0站(出發(fā)地),第1站,第2站,……,第100站. 一枚棋子開始在出發(fā)地,棋手每擲一次硬幣,這枚棋子向前跳動一次,若擲出正向,棋子向前跳一站,若擲出反面,棋子向前跳兩站,直到棋子跳到第99站(獲勝)或跳到第100站(失。⿻r,該游戲結(jié)束. 設(shè)棋子跳到第站的概率為.
(1)求,,,并根據(jù)棋子跳到第站的情況寫出與、的遞推關(guān)系式();
(2)求證:數(shù)列為等比數(shù)列;
(3)求玩該游戲獲勝的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下表是某電器銷售公司2018年度各類電器營業(yè)收入占比和凈利潤占比統(tǒng)計表:
空調(diào)類 | 冰箱類 | 小家電類 | 其它類 | |
營業(yè)收入占比 | 90.10% | 4.98% | 3.82% | 1.10% |
凈利潤占比 | 95.80% | 3.82% | 0.86% |
則下列判斷中不正確的是( )
A.該公司2018年度冰箱類電器銷售虧損
B.該公司2018年度小家電類電器營業(yè)收入和凈利潤相同
C.該公司2018年度凈利潤主要由空調(diào)類電器銷售提供
D.剔除冰箱類銷售數(shù)據(jù)后,該公司2018年度空調(diào)類電器銷售凈利潤占比將會降低
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,曲線的參數(shù)方程為(為參數(shù)).以坐標原點為極點,軸的正半軸為極軸,建立極坐標系,已知直線的極坐標方程為.
(1)求曲線的普通方程和直線的直角坐標方程;
(2)設(shè)為曲線上的一個動點,求點到直線距離的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】中國歷法推測遵循以測為輔、以算為主的原則.例如《周髀算經(jīng)》和《易經(jīng)》里對二十四節(jié)氣的晷(guǐ)影長的記錄中,冬至和夏至的晷影長是實測得到的,其它節(jié)氣的晷影長則是按照等差數(shù)列的規(guī)律計算得出的.下表為《周髀算經(jīng)》對二十四節(jié)氣晷影長的記錄,其中寸表示115寸分(1寸=10分).
節(jié)氣 | 冬至 | 小寒 (大雪) | 大寒 (小雪) | 立春 (立冬) | 雨水 (霜降) | 驚蟄 (寒露) | 春分 (秋分) | 清明 (白露) | 谷雨 (處暑) | 立夏 (立秋) | 小滿 (大暑) | 芒種 (小暑) | 夏至 |
晷影長 (寸 | 135 | 75.5 | 16.0 |
已知《易經(jīng)》中記錄某年的冬至晷影長為130.0寸,夏至晷影長為14.8寸,按照上述規(guī)律那么《易經(jīng)》中所記錄的春分的晷影長應為( )
A.91.6寸B.82.0寸C.81.4寸D.72.4寸
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在四棱錐中,平面,是正三角形,與的交點恰好是中點,又,.
(1)求證:;
(2)設(shè)為的中點,點在線段上,若直線平面,求的長;
(3)求二面角的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com