【題目】
已知函數(shù),且。
(I)試用含的代數(shù)式表示;
(Ⅱ)求的單調(diào)區(qū)間;
(Ⅲ)令,設(shè)函數(shù)在處取得極值,記點(diǎn),證明:線段與曲線存在異于、的公共點(diǎn)。
【答案】(I)
(Ⅱ)當(dāng)時(shí),函數(shù)的單調(diào)增區(qū)間為和,單調(diào)減區(qū)間為;
當(dāng)時(shí),函數(shù)的單調(diào)增區(qū)間為R;
當(dāng)時(shí),函數(shù)的單調(diào)增區(qū)間為和,單調(diào)減區(qū)間為。
(Ⅲ)證明見解析。
【解析】
試題(Ⅰ)從導(dǎo)數(shù)出發(fā),利用即得與的關(guān)系式:(Ⅱ)求函數(shù)單調(diào)區(qū)間,關(guān)鍵研究導(dǎo)函數(shù)零點(diǎn)分布情況:因?yàn)閷?dǎo)函數(shù)有兩個(gè)零點(diǎn):,,因此需分三種情況進(jìn)行討論,此時(shí)最容易遺漏相等的情況(Ⅲ)先根據(jù)極值求出、的坐標(biāo),再聯(lián)立方程確定線段MN與曲線的交點(diǎn),由易得,因此線段與曲線存在異于、的公共點(diǎn)
試題解析:解:(Ⅰ)依題意得,由得…2分
(Ⅱ)由(Ⅰ)得,
故,令,則或
①當(dāng)時(shí),,當(dāng)變化時(shí),的變化情況如下表
可得函數(shù)的單調(diào)增區(qū)間為和,單調(diào)減區(qū)間為。
②當(dāng)時(shí),,此時(shí)恒成立,且僅在處,故函數(shù)的單調(diào)增區(qū)間為;
③當(dāng)時(shí),,函數(shù)的單調(diào)增區(qū)間為和,單調(diào)減區(qū)間為
(Ⅲ)當(dāng)時(shí),,,。
由(Ⅱ)得的單調(diào)增區(qū)間為和,單調(diào)減區(qū)間為,
函數(shù)在處取得極值,故
直線的方程為
由得
令,易得
的圖像在內(nèi)是一條連續(xù)不斷的曲線,
故在內(nèi)存在零點(diǎn),這表明線段與曲線有異于的公共點(diǎn)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:極坐標(biāo)與參數(shù)方程
在極坐標(biāo)系下,已知圓O:和直線
(1)求圓O和直線l的直角坐標(biāo)方程;
(2)當(dāng)時(shí),求直線l與圓O公共點(diǎn)的一個(gè)極坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中.
(1)若函數(shù)在點(diǎn)處的切線方程為,求的值;
(2)若函數(shù)有兩個(gè)極值點(diǎn),證明:成等差數(shù)列;
(3)若函數(shù)有三個(gè)零點(diǎn),對(duì)任意的,不等式恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知曲線的參數(shù)方程為(為參數(shù)),以直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的正半軸為極軸,建立極坐標(biāo)系,直線的極坐標(biāo)方程是:
(1)求曲線的普通方程和直線的直角坐標(biāo)方程.
(2)點(diǎn)是曲線上的動(dòng)點(diǎn),求點(diǎn)到直線距離的最大值與最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若恒成立,求實(shí)數(shù)的最大值;
(2)在(1)成立的條件下,正實(shí)數(shù),滿足,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某快遞公司收取快遞費(fèi)用的標(biāo)準(zhǔn)是:重量不超過的包裹收費(fèi)元;重量超過的包裹,除收費(fèi)元之外,超過的部分,每超出(不足,按計(jì)算)需再收元.該公司將最近承攬的件包裹的重量統(tǒng)計(jì)如下:
包裹重量(單位: ) | |||||
包裹件數(shù) |
公司對(duì)近天,每天攬件數(shù)量統(tǒng)計(jì)如下表:
包裹件數(shù)范圍 | |||||
包裹件數(shù) (近似處理) | |||||
天數(shù) |
以上數(shù)據(jù)已做近似處理,并將頻率視為概率.
(1)計(jì)算該公司未來天內(nèi)恰有天攬件數(shù)在之間的概率;
(2)(i)估計(jì)該公司對(duì)每件包裹收取的快遞費(fèi)的平均值;
(ii)公司將快遞費(fèi)的三分之一作為前臺(tái)工作人員的工資和公司利潤(rùn),剩余的用作其他費(fèi)用.目前前臺(tái)有工作人員人,每人每天攬件不超過件,工資元.公司正在考慮是否將前臺(tái)工作人員裁減人,試計(jì)算裁員前后公司每日利潤(rùn)的數(shù)學(xué)期望,并判斷裁員是否對(duì)提高公司利潤(rùn)更有利?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)且,,,曲線的參數(shù)方程為為參數(shù)),以為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求的普通方程及的直角坐標(biāo)方程;
(2)若曲線與曲線分別交于點(diǎn),,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸的極坐標(biāo)系中,曲線的極坐標(biāo)方程為.
(1)若,求直線以及曲線的直角坐標(biāo)方程;
(2)若直線與曲線交于兩點(diǎn),且,求直線的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) ,函數(shù)F(x)=f(x)﹣b有四個(gè)不同的零點(diǎn)x1,x2,x3,x4,且滿足:x1<x2<x3<x4,則的取值范圍是( )
A.[,+∞)B.(3,]C.[3,+∞)D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com