【題目】某單位決定建造一批簡易房(房型為長方體狀,房高2.5米),前后墻用2.5米高的彩色鋼板,兩側用2.5米高的復合鋼板,兩種鋼板的價格都用長度來計算(即:鋼板的高均為2.5米,用鋼板的長度乘以單價就是這塊鋼板的價格),每米單價:彩色鋼板為450元,復合鋼板為200元.房頂用其它材料建造,每平方米材料費為200元.每套房材料費控制在32000元以內(nèi).
(1)設房前面墻的長為x,兩側墻的長為y,所用材料費為p,試用x,y表示p;
(2)在材料費的控制下簡易房面積S的最大值是多少?并指出前面墻的長度x應為多少米時S最大.

【答案】
(1)解:依題得,p=2x×450+2y×200+xy×200=900x+400y+200xy

即p=900x+400y+200xy


(2)解:∵S=xy,∴p=900x+400y+200xy≥ +200S=200S+1200

又因為p≤3200,所以200S+1200 ≤3200,

解得﹣16≤ ≤10,

∵S>0,∴0<S≤100,當且僅當 ,即x= 時S取得最大值


【解析】(1)根據(jù)題意可分別求得前面墻,兩側墻和房頂?shù)馁M用,三者相加即可求得P.(2)利用P的表達式和基本不等式求得關于 的不等式關系,求得 的范圍,以及等號成立條件求得x的值.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】下列說法中,所有正確的序號有( )
①在同一坐標系中,函數(shù)y=2x與函數(shù)y=log2x的圖象關于直線y=x對稱;
②函數(shù)f(x)=ax+1(a>0,且a≠1)的圖象經(jīng)過定點(0,2);
③函數(shù) 的最大值為1;
④任取x∈R,都有3x>2x
A.①②③④
B.②
C.①②
D.①②③

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓C: =1(a>b>0)的一個頂點為A(2,0),離心率為 ,直線y=k(x﹣1)與橢圓C交于不同的兩點 M,N.
(1)求橢圓C的方程,并求其焦點坐標;
(2)當△AMN的面積為 時,求k的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,在正方體ABCDABCD′中:

(1)求二面角D′-ABD的大;
(2)若MCD′的中點,求二面角MABD的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知關于x的一元二次不等式ax2+2x+b>0的解集為{x|x≠c},則 (其中a+c≠0)的取值范圍為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知f(x)是定義在R上且以2為周期的偶函數(shù),當0≤x≤1,f(x)=x2 . 如果函數(shù)g(x)=f(x)﹣(x+m)有兩個零點,則實數(shù)m的值為(
A.2k(k∈Z)
B.2k或2k+ (k∈Z)
C.0
D.2k或2k﹣ (k∈Z)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】求圓心在直線 x 2 y 3 = 0 上,且過點A(2,-3),B(-2,-5)的圓C的方程.
(1)求圓心在直線 上,且過點A(2,-3),B(-2,-5)的圓C的方程.
(2)設 是圓C上的點,求 的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,兩個正方形 所在平面互相垂直,設 分別是 的中點,那么

; ② 平面 ;③ ;④ 異面,其中假命題的個數(shù)為( )
A.4
B.3
C.2
D.1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點H(x0 , y0)在圓C:x2+y2+Dx+Ey+F=0(其中點C為圓心,D2+E2﹣4F>0)外,由點H向圓C引切線,其中一個切點為M.
求證:|HM|= ;
(1)已知點H(x0 , y0)在圓C:x2+y2+Dx+Ey+F=0(其中點C為圓心,D2+E2﹣4F>0)外,由點H向圓C引切線,其中一個切點為M.
求證:|HM|= ;
(2)如圖,P是直線x=4上一動點,以P為圓心的圓P經(jīng)定點B(1,0),直線l是圓P在點B處的切線,過A(﹣1,0)作圓P的兩條切線分別與l交于E,F(xiàn)兩點.
求證:|EA|+|EB|為定值.

查看答案和解析>>

同步練習冊答案