【題目】已知橢圓C: =1(a>b>0)的一個頂點為A(2,0),離心率為 ,直線y=k(x﹣1)與橢圓C交于不同的兩點 M,N.
(1)求橢圓C的方程,并求其焦點坐標;
(2)當△AMN的面積為 時,求k的值.
【答案】
(1)解:由題意可得:a=2, ,a2=b2+c2,聯(lián)立解得a=2,c=b= .
∴橢圓C的標準方程為: =1,其焦點坐標為:
(2)解:設(shè)M(x1,y1),N(x2,y2),聯(lián)立 ,
化為:(1+2k2)x2﹣4k2x+2k2﹣4=0,
△>0,∴x1+x2= ,x1x2= .
∴|MN|=
= = .
點A到直線MN的距離d= .
∴△AMN的面積= = |MN|= ,
化為:20k4﹣7k2﹣13=0,
解得k2=1,解得k=±1
【解析】(1)由題意可得:a=2, ,a2=b2+c2 , 聯(lián)立解得即可得出.(2)設(shè)M(x1 , y1),N(x2 , y2),直線方程與橢圓方程聯(lián)立化為:(1+2k2)x2﹣4k2x+2k2﹣4=0,利用根與系數(shù)的關(guān)系可得|MN|= ,點A到直線MN的距離d.利用△AMN的面積= = |MN|,解出即可得出.
科目:高中數(shù)學 來源: 題型:
【題目】將函數(shù)y=sin(2x+ )的圖象向右平移 個最小正周期后,所得圖象對應(yīng)的函數(shù)為( )
A.y=sin(2x﹣ )
B.y=sin(2x﹣ )
C.y=sin(2x﹣ )
D.y=sin(2x+ )
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知在△ABC中,A,B的坐標分別為(-1,2),(4,3),AC的中點M在y軸上,BC的中點N在x軸上.
(1)求點C的坐標;
(2)求直線MN的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列各對直線不互相垂直的是( )
A.l1的傾斜角為120°,l2過點P(1,0),Q(4, )
B.l1的斜率為- ,l2過點P(1,1),Q
C.l1的傾斜角為30°,l2過點P(3, ),Q(4,2 )
D.l1過點M(1,0),N(4,-5),l2過點P(-6,0),Q(-1,3)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知點M(2,2),N(5,-2),點P在x軸上,分別求滿足下列條件的點P的坐標.
(1)∠MOP=∠OPN(O是坐標原點).
(2)∠MPN是直角.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若拋物線的頂點是雙曲線x2﹣y2=1的中心,焦點是雙曲線的右頂點
(1)求拋物線的標準方程;
(2)若直線l過點C(2,1)交拋物線于M,N兩點,是否存在直線l,使得C恰為弦MN的中點?若存在,求出直線l方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)= .
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若g(x)=xf(x)+mx在區(qū)間(0,e]上的最大值為﹣3,求m的值;
(3)若x≥1時,有不等式f(x)≥ 恒成立,求實數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某單位決定建造一批簡易房(房型為長方體狀,房高2.5米),前后墻用2.5米高的彩色鋼板,兩側(cè)用2.5米高的復合鋼板,兩種鋼板的價格都用長度來計算(即:鋼板的高均為2.5米,用鋼板的長度乘以單價就是這塊鋼板的價格),每米單價:彩色鋼板為450元,復合鋼板為200元.房頂用其它材料建造,每平方米材料費為200元.每套房材料費控制在32000元以內(nèi).
(1)設(shè)房前面墻的長為x,兩側(cè)墻的長為y,所用材料費為p,試用x,y表示p;
(2)在材料費的控制下簡易房面積S的最大值是多少?并指出前面墻的長度x應(yīng)為多少米時S最大.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=ax3+bx2﹣3x在x=±1處取得極值
(1)求函數(shù)f(x)的解析式;
(2)求證:對于區(qū)間[﹣1,1]上任意兩個自變量的值x1 , x2 , 都有|f(x1)﹣f(x2)|≤4;
(3)若過點A(1,m)(m≠﹣2)可作曲線y=f(x)的三條切線,求實數(shù)m的范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com