【題目】已知{an}是等比數(shù)列,a1=2,且a1 , a3+1,a4成等差數(shù)列.
(1)求數(shù)列{an}的通項公式;
(2)若bn=log2an , 求數(shù)列{bn}的前n項和Sn

【答案】
(1)解:設(shè)數(shù)列{an}的公比為q,則 ,

∵a1,a3+1,a4成等差數(shù)列,

∴a1+a4=2(a3+1),即2+2q3=2(2q2+1),

整理得q2(q﹣2)=0,

∵q≠0,∴q=2,

(n∈N*).


(2)解:∵


【解析】利用等差數(shù)列、等比數(shù)列的定義及等差數(shù)列的前n項和來解決問題即可.
【考點精析】解答此題的關(guān)鍵在于理解等差數(shù)列的前n項和公式的相關(guān)知識,掌握前n項和公式:,以及對等比數(shù)列的通項公式(及其變式)的理解,了解通項公式:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知半徑為的圓的圓心在軸上,圓心的橫坐標(biāo)是整數(shù),且與直線相切.

(Ⅰ)求圓的方程;

(Ⅱ)設(shè)直線 與圓相交于兩點,求實數(shù)的取值范圍;

(Ⅲ) 在(Ⅱ)的條件下,是否存在實數(shù),使得弦的垂直平分線過點,若存在,求出實數(shù)的值;若不存在,請說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知橢圓C1 +y2=1,雙曲線C2 =1(a>0,b>0),若以C1的長軸為直徑的圓與C2的一條漸近線交于A,B兩點,且C1與該漸近線的兩交點將線段AB三等分,則C2的離心率為( )

A.9
B.5
C.
D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下面的莖葉圖記錄了甲、乙兩代表隊各10名同學(xué)在一次英語聽力比賽中的成績(單位:分).已知甲代表隊數(shù)據(jù)的中位數(shù)為76,乙代表隊數(shù)據(jù)的平均數(shù)是75.

(1)求的值;(直接寫出結(jié)果,不必寫過程)

(2)若分別從甲、乙兩隊隨機各抽取1名成績不低于80分的學(xué)生,求抽到的學(xué)生中,甲隊學(xué)生成績不低于乙隊學(xué)生成績的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若將函數(shù)y=2sin(3x+φ)的圖象向右平移 個單位后得到的圖象關(guān)于點( )對稱,則|φ|的最小值是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】把函數(shù)y=sin x(x∈R)的圖象上所有點向左平移 個單位長度,再把所得圖象上所有點的橫坐標(biāo)變?yōu)樵瓉淼?倍(縱坐標(biāo)不變),得到圖象的函數(shù)解析式為( )
A.y=sin
B.y=sin
C.y=sin
D.y=sin

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合A={x|x2-6x+8<0},
(1)若xAxB的充分條件,求a的取值范圍.
(2)若AB,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱柱 中,側(cè)面 和側(cè)面 均為正方形, ,D為BC的中點.

(1)求證: ;
(2)求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)二次函數(shù)f(x)=ax2+bx+c,函數(shù)F(x)=f(x)-x的兩個零點為m,n(m<n).

(1)若m=-1,n=2,求不等式F(x)>0的解集;

(2)若a>0,且0<x<m<n<,比較f(x)與m的大。

查看答案和解析>>

同步練習(xí)冊答案