精英家教網 > 高中數學 > 題目詳情

【題目】如圖,點P在正方體ABCD﹣A1B1C1D1的表面上運動,且P到直線BC與直線C1D1的距離相等,如果將正方體在平面內展開,那么動點P的軌跡在展開圖中的形狀是(  )

A.
B.
C.
D.

【答案】B
【解析】解:在平面BCC1B1上,

P到直線C1D1的距離為|PC1|,

∵P到直線BC與直線C1D1的距離相等,∴點P到點C1的距離與到直線BC的距離相等,

∴軌跡為拋物線,且點C1為焦點,BC為準線;故排除C,D,

同理可得,在平面ABB1A1上,點P到點B的距離與到直線C1D1的距離相等,

從而排除A,

所以答案是:B.

【考點精析】通過靈活運用棱柱的結構特征,掌握兩底面是對應邊平行的全等多邊形;側面、對角面都是平行四邊形;側棱平行且相等;平行于底面的截面是與底面全等的多邊形即可以解答此題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】某地區(qū)擬建立一個藝術搏物館,采取競標的方式從多家建筑公司選取一家建筑公司,經過層層篩選,甲、乙兩家建筑公司進入最后的招標.現從建筑設計院聘請專家設計了一個招標方案:兩家公司從6個招標總是中隨機抽取3個總題,已知這6個招標問題中,甲公司可正確回答其中4道題目,而乙公司能正面回答每道題目的概率均為 ,甲、乙兩家公司對每題的回答都是相獨立,互不影響的.
(1)求甲、乙兩家公司共答對2道題目的概率;
(2)請從期望和方差的角度分析,甲、乙兩家哪家公司競標成功的可能性更大?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】函數f(x)=sin(2x+φ),其中φ為實數,若f(x)≤|f( )|對(0,+∞)恒成立,且 ,則f(x)的單調遞增區(qū)間是

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】《聊齋志異》中有這樣一首詩:“挑水砍柴不堪苦,請歸但求穿墻術.得訣自詡無所阻,額上墳起終不悟.”在這里,我們稱形如以下形式的等式具有“穿墻術”: 2 = ,3 = ,4 = ,5 =
則按照以上規(guī)律,若8 = 具有“穿墻術”,則n=(
A.7
B.35
C.48
D.63

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設復平面上點Z1 , Z2 , …,Zn , …分別對應復數z1 , z2 , …,zn , …;
(1)設z=r(cosα+isinα),(r>0,α∈R),用數學歸納法證明:zn=rn(cosnα+isinnα),n∈Z+
(2)已知 ,且 (cosα+isinα)(α為實常數),求出數列{zn}的通項公式;
(3)在(2)的條件下,求 |+….

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在矩形ABCD中,AB=4 ,AD=2 ,將△ABD沿BD折起,使得點A折起至A′,設二面角A′﹣BD﹣C的大小為θ.

(1)當θ=90°時,求A′C的長;
(2)當cosθ= 時,求BC與平面A′BD所成角的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=ln(x+1)﹣x2+(2﹣a)x﹣a(a∈R)若存在唯一的正整數x0 , 使得f(x0)>0,則實數a的取值范圍是( 。
A.[ , ]
B.( ,
C.( , ]
D.(ln3,ln2+1)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設全集U=R,集合M={x|x2+x﹣2>0}, ,則(UM)∩N=(  )
A.[﹣2,0]
B.[﹣2,1]
C.[0,1]
D.[0,2]

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】各項為正的數列{an}滿足
(1)當λ=an+1時,求證:數列{an}是等比數列,并求其公比;
(2)當λ=2時,令 ,記數列{bn}的前n項和為Sn , 數列{bn}的前n項之積為Tn , 求證:對任意正整數n,2n+1Tn+Sn為定值.

查看答案和解析>>

同步練習冊答案