【題目】已知數(shù)列滿足,,其中是數(shù)列的前n項(xiàng)和.
(1)求和的值及數(shù)列的通項(xiàng)公式;
(2)設(shè).
①若,求k的值;
②求證:數(shù)列(中的任意一項(xiàng)總可以表示成該數(shù)列其他兩項(xiàng)之積.
【答案】(1),,;(2)①1,②見解析
【解析】
(1)利用遞推關(guān)系式求出數(shù)列的前幾項(xiàng),同時(shí)求出數(shù)列的通項(xiàng)公式;(2)結(jié)合第一問的結(jié)論求出,①直接代入即可求解;②對(duì)于給定的,若存在,,,,使得,只要找到相應(yīng)的整數(shù),即可證明.
(1)時(shí),,所以,
時(shí),,所以,所以.
由,①
所以,②
由②①得,
即,③
當(dāng)時(shí),,④
由③④得,
即,
所以數(shù)列是首項(xiàng)為0,公差為2的等差數(shù)列,
故數(shù)列的通項(xiàng)公式是.
(2);
;
①;
.
②對(duì)于給定的,若存在,,,,使得;
,只需,
兩邊取倒數(shù),即,即;
即,;取,則;
;
對(duì)數(shù)列中的任意一項(xiàng),總可以表示成該數(shù)列其他兩項(xiàng)之積.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某快遞公司收取快遞費(fèi)用的標(biāo)準(zhǔn)是:重量不超過的包裹收費(fèi)元;重量超過的包裹,除收費(fèi)元之外,超過的部分,每超出(不足,按計(jì)算)需再收元.該公司將最近承攬的件包裹的重量統(tǒng)計(jì)如下:
包裹重量(單位: ) | |||||
包裹件數(shù) |
公司對(duì)近天,每天攬件數(shù)量統(tǒng)計(jì)如下表:
包裹件數(shù)范圍 | |||||
包裹件數(shù) (近似處理) | |||||
天數(shù) |
以上數(shù)據(jù)已做近似處理,并將頻率視為概率.
(1)計(jì)算該公司未來天內(nèi)恰有天攬件數(shù)在之間的概率;
(2)(i)估計(jì)該公司對(duì)每件包裹收取的快遞費(fèi)的平均值;
(ii)公司將快遞費(fèi)的三分之一作為前臺(tái)工作人員的工資和公司利潤,剩余的用作其他費(fèi)用.目前前臺(tái)有工作人員人,每人每天攬件不超過件,工資元.公司正在考慮是否將前臺(tái)工作人員裁減人,試計(jì)算裁員前后公司每日利潤的數(shù)學(xué)期望,并判斷裁員是否對(duì)提高公司利潤更有利?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)在其定義域內(nèi)有兩個(gè)不同的極值點(diǎn).
(1)求函數(shù)a的取值范圍;
(2)記函數(shù)的兩個(gè)極值點(diǎn)為,,且,證明對(duì)任意實(shí)數(shù),都有不等式成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C:(a>b>0)的兩個(gè)焦點(diǎn)分別為F1,F2,離心率為,過F1的直線l與橢圓C交于M,N兩點(diǎn),且△MNF2的周長(zhǎng)為8.
(1)求橢圓C的方程;
(2)若直線y=kx+b與橢圓C分別交于A,B兩點(diǎn),且OA⊥OB,試問點(diǎn)O到直線AB的距離是否為定值,證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)且 )曲線的參數(shù)方程為(為參數(shù),且),以為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為: ,曲線的極坐標(biāo)方程為.
(1)求與的交點(diǎn)到極點(diǎn)的距離;
(2)設(shè)與交于點(diǎn),與交于點(diǎn),當(dāng)在上變化時(shí),求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著科技的發(fā)展,網(wǎng)購已經(jīng)逐漸融入了人們的生活.在家里面不用出門就可以買到自己想要的東西,在網(wǎng)上付款即可,兩三天就會(huì)送到自己的家門口,如果近的話當(dāng)天買當(dāng)天就能送到,或者第二天就能送到,所以網(wǎng)購是非常方便的購物方式.某公司組織統(tǒng)計(jì)了近五年來該公司網(wǎng)購的人數(shù)(單位:人)與時(shí)間(單位:年)的數(shù)據(jù),列表如下:
1 | 2 | 3 | 4 | 5 | |
24 | 27 | 41 | 64 | 79 |
(1)依據(jù)表中給出的數(shù)據(jù),是否可用線性回歸模型擬合與的關(guān)系,請(qǐng)計(jì)算相關(guān)系數(shù)并加以說明(計(jì)算結(jié)果精確到0.01).(若,則線性相關(guān)程度很高,可用線性回歸模型擬合)
附:相關(guān)系數(shù)公式 ,參考數(shù)據(jù).
(2)建立關(guān)于的回歸方程,并預(yù)測(cè)第六年該公司的網(wǎng)購人數(shù)(計(jì)算結(jié)果精確到整數(shù)).
(參考公式: ,)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中a為非零常數(shù).
討論的極值點(diǎn)個(gè)數(shù),并說明理由;
若,證明:在區(qū)間內(nèi)有且僅有1個(gè)零點(diǎn);設(shè)為的極值點(diǎn),為的零點(diǎn)且,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)將100名高一新生分成水平相同的甲,乙兩個(gè)“平行班”,每班50人.陳老師采用A,B兩種不同的教學(xué)方式分別在甲,乙兩個(gè)班級(jí)進(jìn)行教改實(shí)驗(yàn).為了解教學(xué)效果,期末考試后,陳老師分別從兩個(gè)班級(jí)中各隨機(jī)抽取20名學(xué)生的成績(jī)進(jìn)行統(tǒng)計(jì),作出莖葉圖如下,計(jì)成績(jī)不低于90分者為“成績(jī)優(yōu)秀”.
(1)從乙班樣本的20個(gè)個(gè)體中,從不低于86分的成績(jī)中隨機(jī)抽取2個(gè),求抽出的兩個(gè)均“成績(jī)優(yōu)秀”的概率;
(2)由以上統(tǒng)計(jì)數(shù)據(jù)填寫下面2x2列聯(lián)表,并判斷是否有的把握認(rèn)為“成績(jī)優(yōu)秀”與教學(xué)方式有關(guān).
甲班(A方式) | 乙班(B方式) | 總計(jì) | |
成績(jī)優(yōu)秀 | |||
成績(jī)不優(yōu)秀 | |||
總計(jì) |
附:
P( | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 |
k | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | /tr>
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com