【題目】如圖,四邊形與四邊形都是直角梯形,,,,四邊形為菱形,.
(1)求證:平面平面;
(2)若二面角的余弦值為,求的長.
【答案】(1)見解析(2)2
【解析】
(1)取中點,連交于,連,可證得平面,可得在菱形中,,可得平面,同時可證得四邊形是平行四邊形,則,可得平面,可得證明;
(2)以所在直線分別為軸,軸,軸建立如圖所示的空間直角坐標系,由空間向量法及二面角的余弦值為,可得的長.
證明(1):取中點,連交于,連.
,
,,,平面
平面,,
在菱形中,,
又,平面,平面
分別是的中點,,,
又,,,,
四邊形是平行四邊形,則,平面,
又平面,平面平面
(2)解:由(1)得平面,,
以所在直線分別為軸,軸,軸建立如圖所示的空間直角坐標系,
設,則,,,,,,,
設是平面的一個法向量,
則即
取,得,
設是平面的一個法向量,
則即
取,得,
∵二面角的余弦值為.
,解得
.
科目:高中數學 來源: 題型:
【題目】如圖1,在邊長為的正方形中,、分別為、的中點,沿將矩形折起使得,如圖2所示,點在上,,、分別為、中點.
(1)求證:平面;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了解某中學學生對《中華人民共和國交通安全法》的了解情況,調查部門在該校進行了一次問卷調查(共12道題),從該校學生中隨機抽取40人,統計了每人答對的題數,將統計結果分成,,,,,六組,得到如下頻率分布直方圖.
(1)若答對一題得10分,未答對不得分,估計這40人的成績的平均分(同一組中的數據用該組區(qū)間的中點值作代表);
(2)若從答對題數在內的學生中隨機抽取2人,求恰有1人答對題數在內的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了解某品種一批樹苗生長情況,在該批樹苗中隨機抽取了容量為120的樣本,測量樹苗高度(單位:),經統計,其高度均在區(qū)間內,將其按分成6組,制成如圖所示的頻率分布直方圖.其中高度為及以上的樹苗為優(yōu)質樹苗.
試驗區(qū) | 試驗區(qū) | 合計 | |
優(yōu)質樹苗 | 20 | ||
非優(yōu)質樹苗 | 60 | ||
合計 |
(1)求圖中的值,并估計這批樹苗高度的中位數和平均數(同一組數據用該組區(qū)間的中點值作代表);
(2)已知所抽取的這120棵樹苗來自于,兩個試驗區(qū),部分數據如上列聯表:將列聯表補充完整,并判斷是否有的把握認為優(yōu)質樹苗與,兩個試驗區(qū)有關系,并說明理由.
參考數據:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
參考公式:,其中.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某客戶考察了一款熱銷的凈水器,使用壽命為十年,過濾由核心部件濾芯來實現.在使用過程中,濾芯需要不定期更換,其中濾芯每個200元.如圖是根據100臺該款凈水器在十年使用期內更換的濾芯的件數制成的柱狀圖.(以100臺凈水器更換濾芯的頻率代替1臺凈水器更換濾芯發(fā)生的概率)
(1)估計一臺凈水器在使用期內更換濾芯的件數的眾數和中位數.
(2)估計一臺凈水器在使用期內更換濾芯的件數大于10的概率.
(3)已知上述100臺凈水器在購機的同時購買濾芯享受5折優(yōu)惠(使用過程中如需再購買無優(yōu)惠),假設每臺凈水器在購機的同時購買濾芯10個,這100臺凈水器在使用期內,更換濾芯的件數記為a,所需費用記為y,補全下表,估計這100臺凈水器在使用期內購買濾芯所需總費用的平均數.
100臺該款凈水器在試用期內更換濾芯的件數a | 9 | 10 | 11 | 12 |
頻數 | ||||
費用y |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,橢圓:的離心率為,左、右頂點分別為、,線段的長為4.點在橢圓上且位于第一象限,過點,分別作,,直線,交于點.
(1)若點的橫坐標為-1,求點的坐標;
(2)直線與橢圓的另一交點為,且,求的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com