【題目】已知函數(shù)

(1)當(dāng)時(shí),求曲線處的切線方程;

(2)討論方程根的個(gè)數(shù).

【答案】(1);(2)當(dāng)時(shí),方程有一個(gè)根,當(dāng)時(shí),方程有三個(gè)根.

【解析】

試題分析:(1)時(shí),函數(shù)表達(dá)式已知,先求出切點(diǎn)的坐標(biāo),利用導(dǎo)數(shù)求得斜率,用點(diǎn)斜式寫(xiě)出切線方程(2)方程,的定義域?yàn)?/span>.當(dāng)時(shí),易知,故方程無(wú)解,故只需考慮的情況.此時(shí)構(gòu)造函數(shù),利用導(dǎo)數(shù)分類討論的零點(diǎn)個(gè)數(shù).

試題解析:

(1)當(dāng)時(shí),

故所求切線方程為;

(2) 方程,的定義域?yàn)?/span>

當(dāng)時(shí),易知,故方程無(wú)解,故只需考慮的情況

設(shè),令,又

當(dāng)時(shí),所以在區(qū)間上是增函數(shù),又,只有一個(gè)根0

當(dāng)時(shí),由

,所以遞增,在遞減

,遞減

遞增,有一個(gè)根

遞減

有一個(gè)根0

,又遞增

有一個(gè)根

綜上所述,當(dāng)時(shí)方程有一個(gè)根,當(dāng)時(shí)方程有三個(gè)根.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知x0x0+是函數(shù)f(x)=cos2wxsin2wx(ω>0)的兩個(gè)相鄰的零點(diǎn)

(1)求的值;

(2)若對(duì)任意,都有f(x)﹣m≤0,求實(shí)數(shù)m的取值范圍.

(3)若關(guān)于的方程上有兩個(gè)不同的解,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,

(1)求角A的大;

(2)若的角平分線, ,求的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本小題滿分12分)

已知O為坐標(biāo)原點(diǎn),向量,點(diǎn)P滿足

)記函數(shù)·,求函數(shù)的最小正周期;

)若O,PC三點(diǎn)共線,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正四棱錐 中底面邊長(zhǎng)為,側(cè)棱PA與底面ABCD所成角的正切值為

(I)求正四棱錐 的外接球半徑;

(II)若 中點(diǎn),求異面直線 所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了解甲、乙兩廠產(chǎn)品的質(zhì)量,從兩廠生產(chǎn)的產(chǎn)品中分別隨機(jī)抽取各10件樣品,測(cè)量產(chǎn)品中某種元素的含量(單位:毫克),如圖是測(cè)量數(shù)據(jù)的莖葉圖:

規(guī)定:當(dāng)產(chǎn)品中的此種元素含量不小于16毫克時(shí),該產(chǎn)品為優(yōu)等品.

(1)從乙廠抽出的上述10件樣品中,隨機(jī)抽取3件,求抽到的3件樣品中優(yōu)等品數(shù)的分布列及其數(shù)學(xué)期望;

(2)從甲廠的10件樣品中有放回地逐個(gè)隨機(jī)抽取3件,也從乙廠的10件樣品中有放回地逐個(gè)隨機(jī)抽取3件,求抽到的優(yōu)等品數(shù)甲廠恰比乙廠多2件的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

1)記的極小值為,求的最大值;

2)若對(duì)任意實(shí)數(shù)恒有,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列命題中不正確命題的個(gè)數(shù)是

過(guò)空間任意一點(diǎn)有且僅有一個(gè)平面與已知平面垂直

過(guò)空間任意一條直線有且僅有一個(gè)平面與已知平面垂直

過(guò)空間任意一點(diǎn)有且僅有一個(gè)平面與已知的兩條異面直線平行

過(guò)空間任意一點(diǎn)有且僅有一條直線與已知平面垂直

A.1 B.2

C.3 D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)

(1) 判別函數(shù)f(x)的奇偶性;

(2) 判斷函數(shù)f(x)的單調(diào)性,并根據(jù)函數(shù)單調(diào)性的定義證明你的判斷正確;

(3) 求關(guān)于x的不等式f(1x2)f(2x2)0的解集.

查看答案和解析>>

同步練習(xí)冊(cè)答案