【題目】如圖,正四棱錐 中底面邊長(zhǎng)為,側(cè)棱PA與底面ABCD所成角的正切值為

(I)求正四棱錐 的外接球半徑;

(II)若 中點(diǎn),求異面直線 所成角的正切值.

【答案】(1);(2).

【解析】試題分析:(1)連結(jié), 交于點(diǎn),連結(jié),則,利用側(cè)棱與底面所成角的正切值為,可得,利用勾股定理建立方程,求出;(2)容易證明以,可得就是異面直線所成的角,在中求解.

試題解析:(1)連結(jié), 交于點(diǎn),連結(jié),則,

就是與底面所成的角,

, 又,則

設(shè)為外接球球心,連,易知,設(shè),則, ∴

∴正四棱錐的外接球半徑為;

(2)連結(jié),由于中點(diǎn), 中點(diǎn),所以

就是異面直線所成的角.

中, ,∴

, 可知, 所以,

中, ,

即異面直線PDAE所成角的正切值為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐的底面為正方形,⊥底面,分別是的中點(diǎn),.

(Ⅰ)求證∥平面;

(Ⅱ)求直線與平面所成的角;

(Ⅲ)求四棱錐的外接球的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】簡(jiǎn)陽(yáng)羊肉湯已入選成都市級(jí)非遺項(xiàng)目,成為簡(jiǎn)陽(yáng)的名片。當(dāng)初向各地作了廣告推廣,同時(shí)廣告對(duì)銷售收益也有影響。在若干地區(qū)各投入4萬(wàn)元廣告費(fèi)用,并將各地的銷售收益繪制成頻率分布直方圖(如圖所示).由于工作人員操作失誤,橫軸的數(shù)據(jù)丟失,但可以確定橫軸是從0開(kāi)始計(jì)數(shù)的.

(Ⅰ)根據(jù)頻率分布直方圖,計(jì)算圖中各小長(zhǎng)方形的寬度;

(Ⅱ)根據(jù)頻率分布直方圖,估計(jì)投入4萬(wàn)元廣告費(fèi)用之后,并將各地銷售收益的平均值(以各組的區(qū)間中點(diǎn)值代表該組的取值);

(Ⅲ)按照類似的研究方法,測(cè)得另外一些數(shù)據(jù),并整理得到下表:

廣告投入x(單位:萬(wàn)元)

1

2

3

4

5

銷售收益y(單位:百萬(wàn)元)

2

3

2

7

表中的數(shù)據(jù)顯示,之間存在線性相關(guān)關(guān)系,請(qǐng)將(Ⅱ)的結(jié)果填入空白欄,并計(jì)算關(guān)于的回歸方程.回歸直線的斜率和截距的最小二乘估計(jì)公式分別為 ,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)求過(guò)點(diǎn)且在兩個(gè)坐標(biāo)軸上截距相等的直線方程。

(2)已知圓心為的圓經(jīng)過(guò)點(diǎn),且圓心在直線上,求圓心為的圓的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓C:x2+y2=9,點(diǎn)A(-5,0),直線l:x-2y=0.

(1)求與圓C相切,且與直線l垂直的直線方程;

(2)在直線OA上(O為坐標(biāo)原點(diǎn)),存在定點(diǎn)B(不同于點(diǎn)A),滿足:對(duì)于圓C上任一點(diǎn)P都有一常數(shù),試求所有滿足條件的點(diǎn)B的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(1)當(dāng)時(shí),求曲線處的切線方程;

(2)討論方程根的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(1)求函數(shù)的極值;

(2)對(duì)于曲線上的不同兩點(diǎn),如果存在曲線上的點(diǎn),且使得曲線在點(diǎn)處的切線,則稱為弦的伴隨直線,特別地,當(dāng)時(shí),又稱—伴隨直線.

①求證:曲線的任意一條弦均有伴隨直線,并且伴隨直線是唯一的;

②是否存在曲線,使得曲線的任意一條弦均有—伴隨直線?若存在,給出一條這樣的曲線,并證明你的結(jié)論;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某大學(xué)開(kāi)設(shè)甲、乙、丙三門選修課,學(xué)生是否選修哪門課互不影響,已知某學(xué)生只選修甲的概率為0.08,只選修甲和乙的概率是0.12,至少選修一門的概率是0.88,用表示該學(xué)生選修的課程門數(shù)和沒(méi)有選修的課程門數(shù)的乘積.

(1函數(shù)上的偶函數(shù)為事件,求事件的概率;

(2)求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知

討論的單調(diào)性;

存在兩個(gè)極值點(diǎn),求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案