設(shè)f(x)=aln x+x+1,其中a∈R,曲線y=f(x)在點(diǎn)(1,f(1))處的切線垂直于y軸.
(1)求a的值;
(2)求函數(shù)f(x)的極值.

(1) a=-1      (2) f(x)在x=1處取得極小值f(1)=3

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知某商品的進(jìn)貨單價(jià)為1元/件,商戶甲往年以單價(jià)2元/件銷售該商品時(shí),年銷量為1萬件,今年擬下調(diào)銷售單價(jià)以提高銷量,增加收益.據(jù)測(cè)算,若今年的實(shí)際銷售單價(jià)為x元/件(1≤x≤2),今年新增的年銷量(單位:萬件)與(2-x)2成正比,比例系數(shù)為4.
(1)寫出今年商戶甲的收益y(單位:萬元)與今年的實(shí)際銷售單價(jià)x間的函數(shù)關(guān)系式;
(2)商戶甲今年采取降低單價(jià),提高銷量的營(yíng)銷策略是否能獲得比往年更大的收益(即比往年收益更多)?說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)=x2-mlnx+(m-1)x,當(dāng)m≤0時(shí),試討論函數(shù)f(x)的單調(diào)性;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)=ax3+bx2-3x(a、b∈R)在點(diǎn)x=-1處取得極大值為2.
(1)求函數(shù)f(x)的解析式;
(2)若對(duì)于區(qū)間[-2,2]上任意兩個(gè)自變量的值x1、x2,都有|f(x1)-f(x2)|≤c,求實(shí)數(shù)c的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)=(x2ax-2a2+3a)ex(x∈R),其中a∈R.
(1)當(dāng)a=0時(shí),求曲線yf(x)在點(diǎn)(1,f(1))處的切線的斜率;
(2)當(dāng)a時(shí),求函數(shù)f(x)的單調(diào)區(qū)間與極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)定義在(0,+∞)上的函數(shù)f(x)=ax++b(a>0).
(1)求f(x)的最小值;
(2)若曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程為y=x,求a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知a,b為常數(shù),且a≠0,函數(shù)f(x)=-axb
axln x,f(e)=2.
①求b;②求函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)=4x3+3tx2-6t2xt-1,x∈R,其
t∈R.
①當(dāng)t=1時(shí),求曲線yf(x)在點(diǎn)(0,f(0))處的切線方程;
②當(dāng)t≠0時(shí),求f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)命題P:函數(shù)在區(qū)間[-1,1]上單調(diào)遞減;
命題q:函數(shù)的定義域?yàn)镽.若命題p或q為假命題,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案