已知a,b為常數(shù),且a≠0,函數(shù)f(x)=-ax+b
+axln x,f(e)=2.
①求b;②求函數(shù)f(x)的單調(diào)區(qū)間.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)f(x)=aln x++x+1,其中a∈R,曲線y=f(x)在點(diǎn)(1,f(1))處的切線垂直于y軸.
(1)求a的值;
(2)求函數(shù)f(x)的極值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
請(qǐng)你設(shè)計(jì)一個(gè)包裝盒,如圖所示,ABCD是邊長為60 cm的正方形硬紙片,切去陰影部分所示的四個(gè)全等的等腰直角三角形,再沿虛線折起,使得A,B,C,D四個(gè)點(diǎn)重合于圖中的點(diǎn)P,正好形成一個(gè)正四棱柱形狀的包裝盒,E,F在AB上,是被切去的一個(gè)等腰直角三角形,斜邊的兩個(gè)端點(diǎn),設(shè)AE=FB=x(cm).
①某廣告商要求包裝盒的側(cè)面積S(cm2)最大,試問x應(yīng)取何值?
②某廠商要求包裝盒的容積V(cm3)最大,試問x應(yīng)取何值?并求出此時(shí)包裝盒的高與底面邊長的比值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)f(x)=2x3+ax2+bx+1的導(dǎo)數(shù)為f′(x),若函數(shù)y=f′(x)
的圖象關(guān)于直線x=-對(duì)稱,且f′(1)=0.
①求實(shí)數(shù)a,b的值;②求函數(shù)f(x)的極值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)(e為自然對(duì)數(shù)的底數(shù))
(1)求函數(shù)的單調(diào)區(qū)間;
(2)設(shè)函數(shù),存在實(shí)數(shù),使得成立,求實(shí)數(shù)的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)f(x)=ln(x2+1),g(x)=x2-.
(1)求F(x)=f(x)-g(x)的單調(diào)區(qū)間,并證明對(duì)[-1,1]上的任意x1,x2,x3,都有F(x1)+F(x2)>F(x3);
(2)將y=f(x)的圖像向下平移a(a>0)個(gè)單位,同時(shí)將y=g(x)的圖像向上平移b(b>0)個(gè)單位,使它們恰有四個(gè)交點(diǎn),求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com