【題目】如圖所示,在直角中有一內(nèi)接正方形,它的一條邊在直角三角形的斜邊上,設(shè).

1)用表示的面積

2)用表示正方形的面積;

3)當(dāng)變化時,求的最小值.

【答案】1;(23)最小值為

【解析】

1)由題意可得ACatanθ,故

2)設(shè)正方形DEFG邊長為m,則,由此求出ABm,再由m2求得結(jié)果.

3)化簡=.當(dāng) sin2θ1時,u取得最小值,得fθ)最小值

1)∵在△ABC中,∴∠CBAθ,ABa

ACatanθ

2)設(shè)正方形DEFG邊長為m,則,

,

3)由(1)(2)可得===

∴當(dāng)sin2θ1時,u取得最小值,即fθ)取得最大值.

的最小值為.此時 sin2θ1.∴△ABC為等腰直角三角形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2017年,在青島海水稻研究發(fā)展宗鑫的試驗基地,我國奇數(shù)團隊培養(yǎng)處的最新一批海水稻活動豐收,由原畝產(chǎn)300公斤,條到最高620公斤,弦長測得其海水鹽分濃度月為。

(1)對四種品種水稻隨機抽取部分?jǐn)?shù)據(jù),獲得如下頻率分布直方圖,根據(jù)直方圖,說明這四種品種水稻中,哪一種平均產(chǎn)量最高,哪一種穩(wěn)定(給出判斷即可,不必說明理由);

(2)對鹽堿度與抗病害的情況差得如右圖和的列聯(lián)表的部分?jǐn)?shù)據(jù),填寫列表,并以此說明是否有的把握說明鹽堿度對抗病蟲害有影響。

附表及公式:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某船在海面處測得燈塔在北偏東方向,與相距海里,測得燈塔在北偏西方向,與相距海里,船由向正北方向航行到處,測得燈塔在南偏西方向,這時燈塔相距多少海里?的什么方向?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,近日我漁船編隊在島周圍海域作業(yè),在島的南偏西20°方向有一個海面觀測站,某時刻觀測站發(fā)現(xiàn)有不明船只向我漁船編隊靠近,現(xiàn)測得與相距31海里的處有一艘海警船巡航,上級指示海警船沿北偏西40°方向,以40海里/小時的速度向島直線航行以保護我漁船編隊,30分鐘后到達處,此時觀測站測得間的距離為21海里.

(Ⅰ)求的值;

(Ⅱ)試問海警船再向前航行多少分鐘方可到島?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某租賃公司擁有汽車100輛,當(dāng)每輛車的月租金為3000元時,可全部租出,當(dāng)每輛車的月租金每增加50元時,未租出的車將會增加一輛,租出的車每輛每月需維護費150元,未租出的車每輛每月需要維護費50元。

1)當(dāng)每輛車的月租金定為3600元時,能租出多少輛車?

2)當(dāng)每輛車的月租金定為多少元時,租賃公司的月收益最大?最大月收益是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知非空集合滿足:若,則必有,問這樣的集合S______個;請將該問題推廣到一般情況.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若存在直線l與曲線和曲線都相切,則稱曲線和曲線相關(guān)曲線,有下列四個命

題:

有且只有兩條直線l使得曲線和曲線相關(guān)曲線;

曲線和曲線相關(guān)曲線;

當(dāng)時,曲線和曲線一定不是相關(guān)曲線

必存在正數(shù)使得曲線 和曲線 相關(guān)曲線”.

其中正確命題的個數(shù)為( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法錯誤的是( )

A. 命題x24x30,則x3”的逆否命題是:x≠3,則x24x3≠0”

B. “x>1”“|x|>0”的充分不必要條件

C. pq為假命題,則p、q均為假命題

D. 命題p“x0∈R使得x01<0”,則p“x∈R,均有x2x1≥0”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了解某地區(qū)觀眾對大型綜藝活動《中國好聲音》的收視情況,隨機抽取了100名觀眾進行調(diào)查,其中女性有55名.下面是根據(jù)調(diào)查結(jié)果繪制的觀眾收看該節(jié)目的場數(shù)與所對應(yīng)的人數(shù)表:

場數(shù)

9

10

11

12

13

14

人數(shù)

10

18

22

25

20

5

將收看該節(jié)目場次不低于13場的觀眾稱為“歌迷”,已知“歌迷”中有10名女性.

(1)根據(jù)已知條件完成下面的2×2列聯(lián)表,并據(jù)此資料我們能否有95%的把握認(rèn)為“歌迷”與性別有關(guān)?

非歌迷

歌迷

合計

合計

(2)將收看該節(jié)目所有場次(14場)的觀眾稱為“超級歌迷”,已知“超級歌迷”中有2名女性,若從“超級歌迷”中任意選取2人,求至少有1名女性觀眾的概率.

P(K2≥k)

0.05

0.01

k

3.841

6.635

附:K2=

查看答案和解析>>

同步練習(xí)冊答案