【題目】某化工廠引進(jìn)一條先進(jìn)生產(chǎn)線生產(chǎn)某種化工產(chǎn)品, 其生產(chǎn)的總成本(萬(wàn)元)與年產(chǎn)量(噸)之間的函數(shù)關(guān)系式可以近似地表示為,已知此生產(chǎn)線年產(chǎn)量最大為噸.
(1)求年產(chǎn)量為多少噸時(shí),生產(chǎn)每噸產(chǎn)品的平均成本最低,并求最低成本;
(2)若毎噸產(chǎn)品平均出廠價(jià)為萬(wàn)元,那么當(dāng)年產(chǎn)量為多少噸時(shí),可以獲得最大利潤(rùn)?最大利潤(rùn)是多少?
【答案】(1)當(dāng)時(shí)每噸平均成本最低,且最低成本為萬(wàn)元;(2)產(chǎn)量為噸時(shí),最大年利潤(rùn)萬(wàn)元.
【解析】
試題分析:(1)平均成本即,化簡(jiǎn)后用基本不等式求得最低成本;(2)設(shè)年利潤(rùn)為(萬(wàn)元),則,這是一個(gè)二次函數(shù),利用配方法可求得最大值.
試題解析:
(1)設(shè)每噸的平均成本為(萬(wàn)元/),則,當(dāng)時(shí)每噸平均成本最低,且最低成本為萬(wàn)元.
(2)設(shè)年利潤(rùn)為(萬(wàn)元),則,
所以當(dāng)年產(chǎn)量為噸時(shí),最大年利潤(rùn)萬(wàn)元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在數(shù)學(xué)考試中,小明的成績(jī)?cè)?0分以上的概率是0.18,在80~89分的概率是0.51,在70~79分的概率是0.15,在60~69分的概率是0.09,60分以下的概率是0.07.計(jì)算:
(1)小明在數(shù)學(xué)考試中取得80分以上成績(jī)的概率;
(2)小明考試及格的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】大學(xué)畢業(yè)生小王相應(yīng)國(guó)家“自主創(chuàng)業(yè)”的號(hào)召,利用銀行小額無(wú)息貸款開(kāi)辦了一家飾品店,該店購(gòu)進(jìn)一種今年新上市的飾品進(jìn)行銷售,飾品的進(jìn)價(jià)為每件40元,售價(jià)為每件60元,每月可賣出300件,市場(chǎng)調(diào)查反映:調(diào)整價(jià)格時(shí),售價(jià)每漲1元每月要少賣10件;售價(jià)每下降1元每月多賣20件,為獲得更大的利潤(rùn),現(xiàn)將飾品售價(jià)調(diào)整為(元/件)(即售價(jià)上漲,即售價(jià)下降),每月飾品銷售為(件),月利潤(rùn)為(元).
(1)直接寫出與之間的函數(shù)關(guān)系式;
(2)如何確定銷售價(jià)格才能使月利潤(rùn)最大?求最大月利潤(rùn);
(3)為了使每月利潤(rùn)不少于6000元,應(yīng)如何控制銷售價(jià)格?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)定義在區(qū)間上的函數(shù)和,如果對(duì)任意,都有成立,那么稱函數(shù)在區(qū)間D上可被替代,D稱為“替代區(qū)間”.給出以下命題:
①在區(qū)間上可被替代;
②可被替代的一個(gè)“替代區(qū)間”為;
③在區(qū)間可被替代,則;
④,則存在實(shí)數(shù),使得在區(qū)間上被替代;
其中真命題的有
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】關(guān)于下列命題:
①若一組數(shù)據(jù)中的每一個(gè)數(shù)據(jù)都加上同一個(gè)數(shù)后,方差恒不變;
②滿足方程的值為函數(shù)的極值點(diǎn);
③命題“p且q為真” 是命題“p或q為真”的必要不充分條件;
④若函數(shù)(且)的反函數(shù)的圖像過(guò)點(diǎn),則的最小值為;
⑤點(diǎn)是曲線上一動(dòng)點(diǎn),則的最小值是。
其中正確的命題的序號(hào)是____________(注:把你認(rèn)為正確的命題的序號(hào)都填上)。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),
(1)求函數(shù)的單調(diào)遞減區(qū)間;
(2)若關(guān)于的方程在區(qū)間上有兩個(gè)不等的根,求實(shí)數(shù)的取值范圍;
(3)若存在,當(dāng)時(shí),恒有,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知.
(1)當(dāng)為常數(shù),且在區(qū)間變化時(shí),求的最小值;
(2)證明:對(duì)任意的,總存在,使得 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)f(x)滿足f(x+1)﹣f(x)=2x且f(0)=1.
(1)求f(x)的解析式;
(2)當(dāng)x∈[﹣1,1]時(shí),不等式:f(x)>2x+m恒成立,求實(shí)數(shù)m的范圍.
(3)設(shè)g(t)=f(2t+a),t∈[﹣1,1],求g(t)的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com