【題目】下列說法中,正確的個數(shù)是( )

1)在頻率分布直方圖中,中位數(shù)左邊和右邊的直方圖的面積相等.

2)如果一組數(shù)中每個數(shù)減去同一個非零常數(shù),則這一組數(shù)的平均數(shù)改變,方差不改變.

3)一個樣本的方差s2=[x32+X—32+ +X32],則這組數(shù)據(jù)總和等于60.

4)數(shù)據(jù)的方差為,則數(shù)據(jù)的方差為.

A.4B.3C.2D.1

【答案】A

【解析】

試題對于(1),根據(jù)頻率分布直方圖,中位數(shù)左邊和右邊的直方圖的面積相等,故正確;對于(2),根據(jù)平均數(shù)和方差的意義,一組數(shù)中每個數(shù)減去同一個非零常數(shù),這組數(shù)的平均數(shù)改變,方差不改變;對于(3),由s2=[x32+X—32+ +X32]知樣本容量為20,平均數(shù)為3,故總和為60;對于(4),由方差的定義知,數(shù)據(jù)的方差為數(shù)據(jù)的方差的4倍,故選A..

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2019年初,某市為了實現(xiàn)教育資源公平,辦人民滿意的教育,準備在今年8月份的小升初錄取中在某重點中學(xué)實行分數(shù)和搖號相結(jié)合的錄取辦法.該市教育管理部門為了了解市民對該招生辦法的贊同情況,隨機采訪了440名市民,將他們的意見和是否近三年家里有小升初學(xué)生的情況進行了統(tǒng)計,得到如下的2×2列聯(lián)表.

贊同錄取辦法人數(shù)

不贊同錄取辦法人數(shù)

合計

近三年家里沒有小升初學(xué)生

180

40

220

近三年家里有小升初學(xué)生

140

80

220

合計

320

120

440

1)根據(jù)上面的列聯(lián)表判斷,能否在犯錯誤的概率不超過0.001的前提下認為是否贊同小升初錄取辦法與近三年是否家里有小升初學(xué)生有關(guān);

2)從上述調(diào)查的不贊同小升初錄取辦法人員中根據(jù)近三年家里是否有小升初學(xué)生按分層抽樣抽出6人,再從這6人中隨機抽出3人進行電話回訪,求3人中恰有1人近三年家里沒有小升初學(xué)生的概率.

附:,其中.

P()

0.10

0.05

0.025

0.10

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形是邊長為2的菱形,且,平面,,,點是線段上任意一點.

(1)證明:平面平面;

(2)若的最大值是,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從金山區(qū)走出去的陳馳博士,在《自然—可持續(xù)性》雜志上發(fā)表的論文中指出:地球正在變綠,中國通過植樹造林和提高農(nóng)業(yè)效率,在其中起到了主導(dǎo)地位.已知某種樹木的高度(單位:米)與生長年限(單位:年,tN*)滿足如下的邏輯斯蒂函數(shù):,其中e為自然對數(shù)的底數(shù). 設(shè)該樹栽下的時刻為0.

(1)需要經(jīng)過多少年,該樹的高度才能超過5米?(精確到個位)

(2)在第幾年內(nèi),該樹長高最快?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《鄭州市城市生活垃圾分類管理辦法》已經(jīng)政府常務(wù)會議審議通過,自2019121日起施行.垃圾分類是對垃圾收集處置傳統(tǒng)方式的改革,是對垃圾進行有效處置的一種科學(xué)管理方法.所謂垃圾其實都是資源,當你放錯了位置時它才是垃圾.某企業(yè)在市科研部門的支持下進行研究,把廚余垃圾加工處理為一種可銷售的產(chǎn)品.已知該企業(yè)每周的加工處理量最少為75噸,最多為100噸.周加工處理成本y(元)與周加工處理量x(噸)之間的函數(shù)關(guān)系可近似地表示為,且每加工處理一噸廚余垃圾得到的產(chǎn)品售價為16元.

(Ⅰ)該企業(yè)每周加工處理量為多少噸時,才能使每噸產(chǎn)品的平均加工處理成本最低?

(Ⅱ)該企業(yè)每周能否獲利?如果獲利,求出利潤的最大值;如果不獲利,則需要市政府至少補貼多少元才能使該企業(yè)不虧損?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標系中,圓,圓.以坐標原點為極點,軸的正半軸為極軸建立極坐標系.

(1)求圓,的極坐標方程;

(2)設(shè),分別為上的點,若為等邊三角形,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,下頂點為,為橢圓的左、右焦點,過右焦點的直線與橢圓交于兩點,且的周長為.

(I)求橢圓的方程;

(II)經(jīng)過點的直線與橢圓交于不同的兩點 (均異于點),試探求直線的斜率之和是否為定值,證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,長方體ABCDA1B1C1D1中,ADAA11ABm,點M是棱CD的中點.

1)求異面直線B1CAC1所成的角的大小;

2)是否存在實數(shù)m,使得直線AC1與平面BMD1垂直?說明理由;

3)設(shè)P是線段AC1上的一點(不含端點),滿足λ,求λ的值,使得三棱錐B1CD1C1與三棱錐B1CD1P的體積相等.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線C經(jīng)過點,其焦點為FM為拋物線上除了原點外的任一點,過M的直線lx軸、y軸分別交于A,B兩點.

求拋物線C的方程以及焦點坐標;

的面積相等,證明直線l與拋物線C相切.

查看答案和解析>>

同步練習冊答案