【題目】下列有關(guān)結(jié)論正確的個數(shù)為( ) ①小趙、小錢、小孫、小李到4個景點旅游,每人只去一個景點,設(shè)事件A=“4個人去的景點不相同”,事件B=“小趙獨自去一個景點”,則 ;
②設(shè)函數(shù)f(x)存在導(dǎo)數(shù)且滿足 ,則曲線y=f(x)在點(2,f(2))處的切線斜率為﹣1;
③設(shè)隨機變量ξ服從正態(tài)分布N(μ,7),若P(ξ<2)=P(ξ>4),則μ與Dξ的值分別為μ=3,Dξ=7.
A.0
B.1
C.2
D.3
【答案】D
【解析】解:對于①,設(shè)事件A=“4個人去的景點不相同”,事件B=“小趙獨自去一個景點”,
則P(A)= = ,P(B)= = ,P(AB)= = ,則P(A|B)= = ,故①錯;
對于②,設(shè)函數(shù)f(x)存在導(dǎo)數(shù)且滿足 ,
可得f′(2)= =﹣1,
則曲線y=f(x)在點(2,f(2))處的切線斜率為f′(2)=﹣1,故②正確;
對于③,設(shè)隨機變量ξ服從正態(tài)分布N(μ,7),若P(ξ<2)=P(ξ>4),則曲線關(guān)于x=3對稱,
則μ與Dξ的值分別為μ=3,Dξ=7.故③正確.
其中正確的個數(shù)為3.
故選:D.
【考點精析】根據(jù)題目的已知條件,利用命題的真假判斷與應(yīng)用的相關(guān)知識可以得到問題的答案,需要掌握兩個命題互為逆否命題,它們有相同的真假性;兩個命題為互逆命題或互否命題,它們的真假性沒有關(guān)系.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知四個函數(shù):①y=﹣x,②y=﹣ ,③y=x3 , ④y=x ,從中任選2個,則事件“所選2個函數(shù)的圖象有且僅有一個公共點”的概率為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) f(x)=2lnx+x2﹣ax. (Ⅰ)當(dāng)a=5時,求f(x)的單調(diào)區(qū)間;
(Ⅱ)設(shè)A(x1 , y1),B(x2 , y2)是曲線y=f(x)圖象上的兩個相異的點,若直線AB的斜率k>1恒成立,求實數(shù)a的取值范圍;
(Ⅲ)設(shè)函數(shù)f(x)有兩個極值點x1 , x2 , x1<x2且x2>e,若f(x1)﹣f(x2)≥m恒成立,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】橢圓()的離心率是,點在短軸上,且。
(1)球橢圓的方程;
(2)設(shè)為坐標(biāo)原點,過點的動直線與橢圓交于兩點。是否存在常數(shù),使得為定值?若存在,求的值;若不存在,請說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知動圓M恒過點(0,1),且與直線y=﹣1相切.
(1)求圓心M的軌跡方程;
(2)動直線l過點P(0,﹣2),且與點M的軌跡交于A、B兩點,點C與點B關(guān)于y軸對稱,求證:直線AC恒過定點.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xOy中,已知圓C1的參數(shù)方程為 (為參數(shù)),以坐標(biāo)原點為極點,x軸的正半軸為極軸建立極坐標(biāo)系,直線C2的極坐標(biāo)方程為ρcosθ+2=0.
(1)求C1的極坐標(biāo)方程與C2的直角坐標(biāo)方程;
(2)若直線C3的極坐標(biāo)方程為 ,設(shè)C3與C1的交點為M,N,P為C2上的一點,且△PMN的面積等于1,求P點的直角坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若不等式ln(x+2)+a(x2+x)≥0對于任意的x∈[﹣1,+∞)恒成立,則實數(shù)a的取值范圍是( )
A.[0,+∞)
B.[0,1]
C.[0,e]
D.[﹣1,0]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=xlnx+ax+b在(1,f(1))處的切線為2x﹣2y﹣1=0.
(1)求f(x)的單調(diào)區(qū)間與最小值;
(2)求證: .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com