【題目】如圖,在四邊形ABCD中,∠ABC= ,AB:BC=2:3, .
(1)求sin∠ACB的值;
(2)若 ,CD=1,求△ACD的面積.
【答案】
(1)解:∵∠ABC= ,AB:BC=2:3, ,可得:AB= ,
∴在△ABC中,由余弦定理AC2=AB2+BC2﹣2ABBCcos∠ABC,可得:7= +BC2﹣ ,
∴解得:BC=3,AB=2,
∴由正弦定理可得:sin∠ACB= = =
(2)解:∵由(1)及余弦定理可得:
cos∠ACB= = = ,
∴sin = (cos∠ACB+sin∠ACB)
= ( + ),
∴S△ACD= ACCDsin∠ACD= 1× ×( + )= .
【解析】(1)在△ABC中,由已知及余弦定理,比例的性質(zhì)即可解得BC=3,AB=2,由正弦定理即可解得sin∠ACB的值(2)由(1)及余弦定理可求cos∠ACB,利用兩角差的正弦函數(shù)公式可求sin∠ACD的值,利用三角形面積公式即可計(jì)算得解.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解正弦定理的定義的相關(guān)知識,掌握正弦定理:,以及對余弦定理的定義的理解,了解余弦定理:;;.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲廠以x千克/小時(shí)的速度勻速生產(chǎn)某種產(chǎn)品(生產(chǎn)條件要求1≤x≤10),每小時(shí)可獲得的利潤是100(5x+1﹣ )元.
(1)要使生產(chǎn)該產(chǎn)品2小時(shí)獲得的利潤不低于3000元,求x的取值范圍;
(2)要使生產(chǎn)900千克該產(chǎn)品獲得的利潤最大,問:甲廠應(yīng)該選取何種生產(chǎn)速度?并求此最大利潤.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在ABC中,角A,B,C的對邊分別為a,b,c,若△ABC為銳角三角形,且滿足sinB(1+2cosC)=2sinAcosC+cosAsinC,則下列等式成立的是( 。
A.a=2b
B.b=2a
C.A=2B
D.B=2A
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)正方體的平面展開圖及該正方體的直觀圖的示意圖如圖所示,在正方體中,設(shè)BC的中點(diǎn)為M,GH的中點(diǎn)為N
(1)請將字母F,G,H標(biāo)記在正方體相應(yīng)的頂點(diǎn)處(不需說明理由);
(2)證明:直線MN∥平面BDH
(3)求異面直線MN與AG所成角的余弦值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)=ln(mx+1)﹣2(m≠0).
(1)討論f(x)的單調(diào)性;
(2)若m>0,g(x)=f(x)+ 存在兩個(gè)極值點(diǎn)x1 , x2 , 且g(x1)+g(x2)<0,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有兩個(gè)分類變量x與y,其一組觀測值如下面的2×2列聯(lián)表所示:
y1 | y2 | |
x1 | a | 20-a |
x2 | 15-a | 30+a |
其中a,15-a均為大于5的整數(shù),則a取何值時(shí),在犯錯(cuò)誤的概率不超過0.1的前提下認(rèn)為x與y之間有關(guān)系?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,某市在海島A上建了一水產(chǎn)養(yǎng)殖中心.在海岸線l上有相距70公里的B、C兩個(gè)小鎮(zhèn),并且AB=30公里,AC=80公里,已知B鎮(zhèn)在養(yǎng)殖中心工作的員工有3百人,C鎮(zhèn)在養(yǎng)殖中心工作的員工有5百人.現(xiàn)欲在BC之間建一個(gè)碼頭D,運(yùn)送來自兩鎮(zhèn)的員工到養(yǎng)殖中心工作,又知水路運(yùn)輸與陸路運(yùn)輸每百人每公里運(yùn)輸成本之比為1:2.
(1)求sin∠ABC的大小;
(2)設(shè)∠ADB=θ,試確定θ的大小,使得運(yùn)輸總成本最少.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)F1 , F2是橢圓 (0<b<2)的左、右焦點(diǎn),過F1的直線l交橢圓于A,B兩點(diǎn),若|AF2|+|BF2|最大值為5,則橢圓的離心率為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】極坐標(biāo)系中橢圓C的方程為ρ2= ,以極點(diǎn)為原點(diǎn),極軸為x軸非負(fù)半軸,建立平面直角坐標(biāo)系,且兩坐標(biāo)系取相同的單位長度.
(1)若橢圓上任一點(diǎn)坐標(biāo)為P(x,y),求 的取值范圍;
(2)若橢圓的兩條弦AB,CD交于點(diǎn)Q,且直線AB與CD的傾斜角互補(bǔ),求證:|QA||QB|=|QC||QD|.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com