【題目】已知橢圓的離心率為,橢圓與軸交于 兩點,且.
(1)求橢圓的方程;
(2)設(shè)點是橢圓上的一個動點,且直線與直線分別交于 兩點.是否存在點使得以 為直徑的圓經(jīng)過點?若存在,求出點的橫坐標;若不存在,說明理由.
【答案】(1);(2)點不存在.
【解析】分析:(1)根據(jù)橢圓的幾何性質(zhì)知,即,再由離心率得,從而可得,得橢圓方程;
(2)假設(shè)點P存在,并設(shè),寫出PA的方程,求出M點坐標,同理得N點坐標,求出MN的中點坐標,即圓心坐標,利用圓過點D得一關(guān)于的等式,把P點坐標代入橢圓方程后也剛才的等式聯(lián)立解得,注意的范圍,即可知存在不存在.
詳解:(1)由已知,得知,
又因為離心率為,所以.
因為,所以,
所以橢圓的標準方程為.
(2)假設(shè)存在.
設(shè)
由已知可得,
所以的直線方程為,
的直線方程為,
令,分別可得,,
所以,
線段的中點,
若以為直徑的圓經(jīng)過點D(2,0),
則,
因為點在橢圓上,所以,代入化簡得,
所以, 而,矛盾,
所以這樣的點不存在.
科目:高中數(shù)學 來源: 題型:
【題目】雙曲線 的左、右焦點分別為,過作傾斜角為的直線與軸和雙曲線的右支分別交于兩點,若點平分線段,則該雙曲線的離心率是( )
A. B. C. 2 D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】一個工廠在某年連續(xù)10個月每月產(chǎn)品的總成本y(萬元)與該月產(chǎn)量x(萬件)之間有如下一組數(shù)據(jù):
x | 1.08 | 1.12 | 1.19 | 1.28 | 1.36 | 1.48 | 1.59 | 1.68 | 1.80 | 1.87 |
y | 2.25 | 2.37 | 2.40 | 2.55 | 2.64 | 2.75 | 2.92 | 3.03 | 3.14 | 3.26 |
(1)通過畫散點圖,發(fā)現(xiàn)可用線性回歸模型擬合y與x的關(guān)系,請用相關(guān)系數(shù)加以說明;
(2)①建立月總成本y與月產(chǎn)量x之間的回歸方程;
②通過建立的y關(guān)于x的回歸方程,估計某月產(chǎn)量為1.98萬件時,此時產(chǎn)品的總成本為多少萬元?
(均精確到0.001)
附注:①參考數(shù)據(jù):,
,
②參考公式:相關(guān)系數(shù),
回歸方程中斜率和截距的最小二乘估計公式分別為:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】武漢市攝影協(xié)會準備在2020年1月舉辦主題為“我們都是追夢人”攝影圖片展,通過平常人的鏡頭記錄國強民富的幸福生活,攝影協(xié)會收到了來自社會各界的大量作品,打算從眾多照片中選取100張照片展出,其參賽者年齡集中在之間,根據(jù)統(tǒng)計結(jié)果,做出頻率分布直方圖如圖:
(1)求頻率直方圖中的值,并根據(jù)頻率直方圖,求這100位攝影者年齡的中位數(shù);
(2)為了展示不同年齡作者眼中的幸福生活,攝影協(xié)會按照分層抽樣的方法,計劃從這100件照片中抽出20個最佳作品,并邀請相應(yīng)作者參加“講述照片背后的故事”座談會.
①在答題卡上的統(tǒng)計表中填出每組相應(yīng)抽取的人數(shù):
年齡 | |||||
人數(shù) |
②若從年齡在的作者中選出2人把這些圖片和故事整理成冊,求這2人中至少有1人的年齡在的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】蘋果是人們?nèi)粘I钪谐R姷臓I養(yǎng)型水果.某地水果批發(fā)市場銷售來自5個不同產(chǎn)地的富士蘋果,各產(chǎn)地的包裝規(guī)格相同,它們的批發(fā)價格(元/箱)和市場份額如下:
產(chǎn)地 | |||||
批發(fā)價格 | |||||
市場份額 |
市場份額亦稱“市場占有率”.指某一產(chǎn)品的銷售量在市場同類產(chǎn)品中所占比重.
(1)從該地批發(fā)市場銷售的富士蘋果中隨機抽取一箱,求該箱蘋果價格低于元的概率;
(2)按市場份額進行分層抽樣,隨機抽取箱富士蘋果進行檢驗,
①從產(chǎn)地共抽取箱,求的值;
②從這箱蘋果中隨機抽取兩箱進行等級檢驗,求兩箱產(chǎn)地不同的概率;
(3)由于受種植規(guī)模和蘋果品質(zhì)的影響,預(yù)計明年產(chǎn)地的市場份額將增加,產(chǎn)地的市場份額將減少,其它產(chǎn)地的市場份額不變,蘋果銷售價格也不變(不考慮其它因素).設(shè)今年蘋果的平均批發(fā)價為每箱元,明年蘋果的平均批發(fā)價為每箱元,比較的大小.(只需寫出結(jié)論)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an}滿足:a1+a2+a3+…+an=n-an,(n=1,2,3,…)
(Ⅰ)求證:數(shù)列{an-1}是等比數(shù)列;
(Ⅱ)令bn=(2-n)(an-1)(n=1,2,3,…),如果對任意n∈N*,都有bn+t≤t2,求實數(shù)t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(I)求曲線在點處的切線方程;
(Ⅱ)當時,求證:函數(shù)存在極小值;
(Ⅲ)請直接寫出函數(shù)的零點個數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】每年圣誕節(jié),各地的餐館都出現(xiàn)了用餐需預(yù)定的現(xiàn)象,致使--些人在沒有預(yù)定的情況下難以找到用餐的餐館,針對這種現(xiàn)象,專家對人們“用餐地點"以及“性別”作出調(diào)查,得到的情況如下表所示:
在家用餐 | 在餐館用餐 | 總計 | |
女性 | |||
男性 | |||
總計 |
(1)完成上述列聯(lián)表;
(2)根據(jù)表中的數(shù)據(jù),試通過計算判斷是否有的把握說明“用餐地點”與“性別"有關(guān);
(3)若在接受調(diào)查的所有人男性中按照“用餐地點”進行分層抽樣,隨機抽取人,再在人中抽取人贈送餐館用餐券,記收到餐館用餐券的男性中在餐館用餐的人數(shù)為,求的分布列和數(shù)學期望.
附:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,直角梯形中,,,,四邊形為矩形,.
(1)求證:平面平面;
(2)在線段上是否存在點,使得直線與平面所成角的正弦值為,若存在,求出線段的長,若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com