【題目】己知函數(shù)f(x)=loga(x+1),g(x)=2loga(2x+t)(t∈R),a>0,且a≠1.
(1)若1是關(guān)于x的方程f(x)﹣g(x)=0的一個(gè)解,求t的值;
(2)當(dāng)0<a<1且t=﹣1時(shí),解不等式f(x)≤g(x);
(3)若函數(shù)F(x)=afx+tx2﹣2t+1在區(qū)間(﹣1,2]上有零點(diǎn),求t的取值范圍.

【答案】
(1)解:∵1是關(guān)于x的方程f(x)﹣g(x)=0的一個(gè)解,

∴l(xiāng)oga2﹣2loga(2+t)=0,

∴2=(2+t)2,

∴t= ﹣2


(2)解:當(dāng)0<a<1且t=﹣1時(shí),

不等式f(x)≤g(x)可化為

loga(x+1)≤2loga(2x﹣1),

,

解得, <x≤


(3)解:F(x)=afx+tx2﹣2t+1

=x+1+tx2﹣2t+1=tx2+x﹣2t+2,

令tx2+x﹣2t+2=0,

即t(x2﹣2)=﹣(x+2),

∵x∈(﹣1,2],∴x+2∈(1,4],

∴t≠0,x2﹣2≠0;

=﹣ =﹣[(x+2)+ ]+4,

∵2 ≤(x+2)+

∴﹣ ≤﹣[(x+2)+ ]+4≤4﹣2 ,

∴﹣ ≤4﹣2

∴t≤﹣2或t≥


【解析】(1)由題意得loga2﹣2loga(2+t)=0,從而解得.(2)由題意得loga(x+1)≤2loga(2x﹣1),由對(duì)數(shù)函數(shù)的單調(diào)性可得 ,從而解得.(3)化簡(jiǎn)F(x)=tx2+x﹣2t+2,從而令tx2+x﹣2t+2=0,討論可得 =﹣ =﹣[(x+2)+ ]+4,從而解得.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖, 在△中, 點(diǎn)邊上, .

(Ⅰ)求;

(Ⅱ)若△的面積是, 求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中

(Ⅰ)求上的單調(diào)區(qū)間;

(Ⅱ)求為自然對(duì)數(shù)的底數(shù))上的最大值;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中,且

(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;

(2)設(shè),若存在極大值,且對(duì)于的一切可能取值, 的極大值均小于,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】數(shù)列{an}是等差數(shù)列,若 <﹣1,且它的前n項(xiàng)和Sn有最大值,那么當(dāng)Sn取的最小正值時(shí),n=(
A.11
B.17
C.19
D.21

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列函數(shù)中,奇函數(shù)為(
A.f(x)=3x
B.f(x)=x2
C.f(x)=x2
D.f(x)=( x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)fx=ax2lnx.

)若fx)在x=2時(shí)有極值,求實(shí)數(shù)a的值和fx)的極大值;

)若fx)在定義域上是減函數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ax2-(a+2)x+ln x.

(1)當(dāng)a=1時(shí),求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;

(2)當(dāng)a>0時(shí),若f(x)在區(qū)間[1,e]上的最小值為-2,求a的取值范圍;

(3)若對(duì)任意x1,x2(0,+∞),x1<x2,且f(x1)+2x1<f(x2)+2x2恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)數(shù)列的前項(xiàng)和為,且.令.

(1)求的通項(xiàng)公式;

(2)若,且數(shù)列的前項(xiàng)和為,求.

查看答案和解析>>

同步練習(xí)冊(cè)答案