【題目】如圖,圓F和拋物線,過(guò)F的直線與拋物線和圓依次交于A、BC、D四點(diǎn),求的值是( )

A.1B.2C.3D.無(wú)法確定

【答案】A

【解析】

可分兩類(lèi)討論,若直線的斜率不存在,則直線方程為x=1,代入拋物線方程和圓的方程,可直接得到ABCD四個(gè)點(diǎn)的坐標(biāo),從而|AB||CD|=1.若直線的斜率存在,設(shè)為直線方程為y=kx-1),不妨設(shè)Ax1y1),Dx2,y2),過(guò)A、D分別作拋物線準(zhǔn)線的垂線,由拋物線的定義,|AF|=x1+1|DF|=x2+1,把直線方程與拋物線方程聯(lián)立,消去y可得k2x2-2k2+4x+k2=0,利用韋達(dá)定理及|AB|=|AF|-|BF|=x1,|CD|=|DF|-|CF|=x2,可求|AB||CD|的值.

解:若直線的斜率不存在,則直線方程為x=1,代入拋物線方程和圓的方程,可直接得到ABCD四個(gè)點(diǎn)的坐標(biāo)為(1,2)(11)(1,-1)(1-2),所以|AB|=1|CD|=1,從而|AB||CD|=1.若直線的斜率存在,設(shè)為k,因?yàn)橹本過(guò)拋物線的焦點(diǎn)(1,0),則直線方程為y=kx-1),不妨設(shè)Ax1,y1),Dx2,y2),過(guò)A、D分別作拋物線準(zhǔn)線的垂線,由拋物線的定義,|AF|=x1+1|DF|=x2+1,把直線方程與拋物線方程聯(lián)立,消去y可得k2x2-2k2+4x+k2=0,由韋達(dá)定理有 x1x2=1而拋物線的焦點(diǎn)F同時(shí)是已知圓的圓心,所以|BF|=|CF|=R=1
從而有|AB|=|AF|-|BF|=x1,|CD|=|DF|-|CF|=x2
所以|AB||CD|=x1x2=1
故選:A

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一次田徑比賽中,35名運(yùn)動(dòng)員的成績(jī)(單位:分鐘)的莖葉圖如圖所示。

若將運(yùn)動(dòng)員按成績(jī)由好到差編為135號(hào),再用系統(tǒng)抽樣方法從中抽取5人,則其中成績(jī)?cè)趨^(qū)間上的運(yùn)動(dòng)員人數(shù)為

A.6B.5C.4D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】給定橢圓,稱(chēng)圓心在坐標(biāo)原點(diǎn),半徑為的圓是橢圓的“伴橢圓”,若橢圓右焦點(diǎn)坐標(biāo)為,且過(guò)點(diǎn).

1)求橢圓的“伴橢圓”方程;

2)在橢圓的“伴橢圓”上取一點(diǎn),過(guò)該點(diǎn)作橢圓的兩條切線、,證明:兩線垂直;

3)在雙曲線上找一點(diǎn)作橢圓的兩條切線,分別交于切點(diǎn)、使得,求滿足條件的所有點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面四邊形中,已知的面積是的面積的3倍,若存在正實(shí)數(shù)使得成立,則的最小值為( )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若數(shù)列各項(xiàng)均非零,且存在常數(shù),對(duì)任意,恒成立,則成這樣的數(shù)列為“類(lèi)等比數(shù)列”,例如等比數(shù)列一定為類(lèi)等比數(shù)列,則:

1)各項(xiàng)均非零的等差數(shù)列是否可能為“類(lèi)等比數(shù)列”?若可能,請(qǐng)舉例;若不能,說(shuō)明理由;

2)已知數(shù)列為“類(lèi)等比數(shù)列”,且,是否存在常數(shù),使得恒成立?

3)已知數(shù)列為“類(lèi)等比數(shù)列”,且,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某旅游勝地欲開(kāi)發(fā)一座景觀山,從山的側(cè)面進(jìn)行勘測(cè),迎面山坡線由同一平面的兩段拋物線組成,其中所在的拋物線以為頂點(diǎn)、開(kāi)口向下,所在的拋物線以為頂點(diǎn)、開(kāi)口向上,以過(guò)山腳(點(diǎn))的水平線為軸,過(guò)山頂(點(diǎn))的鉛垂線為軸建立平面直角坐標(biāo)系如圖(單位:百米).已知所在拋物線的解析式所在拋物線的解析式為

(1)求值,并寫(xiě)出山坡線的函數(shù)解析式;

(2)在山坡上的700米高度(點(diǎn))處恰好有一小塊平地,可以用來(lái)建造索道站,索道的起點(diǎn)選擇在山腳水平線上的點(diǎn)處,(米),假設(shè)索道可近似地看成一段以為頂點(diǎn)、開(kāi)口向上的拋物線當(dāng)索道在上方時(shí),索道的懸空高度有最大值,試求索道的最大懸空高度;

(3)為了便于旅游觀景,擬從山頂開(kāi)始、沿迎面山坡往山下鋪設(shè)觀景臺(tái)階,臺(tái)階每級(jí)的高度為20厘米,長(zhǎng)度因坡度的大小而定,但不得少于20厘米,每級(jí)臺(tái)階的兩端點(diǎn)在坡面上(見(jiàn)圖).試求出前三級(jí)臺(tái)階的長(zhǎng)度(精確到厘米),并判斷這種臺(tái)階能否一直鋪到山腳,簡(jiǎn)述理由?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在等腰梯形中,,,四邊形為矩形,平面平面,.

1)求證:平面;

2)點(diǎn)在線段上運(yùn)動(dòng),設(shè)平面與平面所成二面角的平面角為),試求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)集合是實(shí)數(shù)集的子集,如果正實(shí)數(shù)滿足:對(duì)任意都存在使得則稱(chēng)為集合的一個(gè)“跨度”,已知三個(gè)命題:

(1)若為集合的“跨度”,則也是集合的“跨度”;

(2)集合的“跨度”的最大值是4;

(3)是集合的“跨度”.

這三個(gè)命題中正確的個(gè)數(shù)是()

A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直三棱柱中,底面是直角三角形,,為側(cè)棱的中點(diǎn).

(1)求異面直線、所成角的余弦值;

(2)求二面角的平面角的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案