【題目】已知數(shù)列{an}滿足an+1=2an﹣1(n∈N+),a1=2.
(1)求證:數(shù)列{an﹣1}為等比數(shù)列,并求數(shù)列{an}的通項公式;
(2)求數(shù)列{nan}的前n項和Sn(n∈N+).
【答案】
(1)證明:∵an+1=2an﹣1(n∈N+),
∴an+1﹣1=2(an﹣1)(n∈N+),
又∵a1﹣1=2﹣1=1,
∴數(shù)列{an﹣1}是首項為1、公比為2的等比數(shù)列,
∴an﹣1=12n﹣1=2n﹣1,
∴an=2n﹣1+1;
(2)解:∵an=2n﹣1+1,
∴nan=n2n﹣1+n,
設(shè)Tn=120+221+322+…+n2n﹣1,
∴2Tn=121+222+323+…+(n﹣1)2n﹣1+n2n,
兩式相減得:﹣Tn=(1+21+22+23+…+2n﹣1)﹣n2n
= ﹣n2n
=(1﹣n)2n﹣1,
∴Tn=(n﹣1)2n+1,
∴Sn=Tn+ =(n﹣1)2n+1+
【解析】(1)通過對an+1=2an﹣1(n∈N+)變形可知數(shù)列{an﹣1}是首項為1、公比為2的等比數(shù)列,進而可得結(jié)論;(2)通過an=2n﹣1+1可知nan=n2n﹣1+n,利用錯位相減法計算即得結(jié)論.
【考點精析】關(guān)于本題考查的等比數(shù)列的通項公式(及其變式)和數(shù)列的前n項和,需要了解通項公式:;數(shù)列{an}的前n項和sn與通項an的關(guān)系才能得出正確答案.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知 , .
(1)當(dāng)n=1,2,3時,分別比較f(n)與g(n)的大。ㄖ苯咏o出結(jié)論);
(2)由(1)猜想f(n)與g(n)的大小關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于函數(shù)f(x)=4sin(2x )(x∈R),有下列命題: ①y=f(x)的表達式可改寫為y=4cos(2x﹣ );
②y=f(x)是以2π為最小正周期的周期函數(shù);
③y=f(x)的圖象關(guān)于點 對稱;
④y=f(x)的圖象關(guān)于直線x=﹣ 對稱.
其中正確的命題的序號是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知橢圓的左、右頂點分別為,上、下頂點分別為,兩個焦點分別為, ,四邊形的面積是四邊形的面積的2倍.
(1)求橢圓的方程;
(2)過橢圓的右焦點且垂直于軸的直線交橢圓于兩點, 是橢圓上位于直線兩側(cè)的兩點.若直線過點,且,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】求橢圓的標(biāo)準(zhǔn)方程
(1)已知某橢圓的左右焦點分別為F1(﹣1,0),F(xiàn)2(1,0),且經(jīng)過點P( , ),求該橢圓的標(biāo)準(zhǔn)方程;
(2)已知某橢圓過點( ,﹣1),(﹣1, ),求該橢圓的標(biāo)準(zhǔn)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)生在一門功課的22次考試中,所得分?jǐn)?shù)莖葉圖如圖所示,則此學(xué)生該門功課考試分?jǐn)?shù)的極差與中位數(shù)之和為( )
A.117
B.118
C.118.5
D.119.5
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若f(x+1)的定義域為[0,1],則函數(shù)f(2x﹣2)的定義域為( )
A.[log23,2]
B.[0,1]
C.
D.[0,2]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,PA⊥底面ABCD,AD⊥AB,AB∥DC,AD=DC=AP=2,AB=1,點E為棱PC的中點.
(Ⅰ)證明:BE⊥DC;
(Ⅱ)求直線BE與平面PBD所成角的正弦值;
(Ⅲ)若F為棱PC上一點,滿足BF⊥AC,求二面角F﹣AB﹣P的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com