【題目】2019年1月1日起新的個人所得稅法開始實施,依據(jù)《中華人民共和國個人所得稅法》可知納稅人實際取得工資、薪金(扣除專項、專項附加及依法確定的其他)所得不超過5000元(俗稱“起征點”)的部分不征稅,超出5000元部分為全月納稅所得額.新的稅率表如下:
2019年1月1日后個人所得稅稅率表
全月應(yīng)納稅所得額 | 稅率(%) |
不超過3000元的部分 | 3 |
超過3000元至12000元的部分 | 10 |
超過12000元至25000元的部分 | 20 |
超過25000元至35000元的部分 | 25 |
個人所得稅專項附加扣除是指個人所得稅法規(guī)定的子女教育、繼續(xù)教育、大病醫(yī)療、住房貸款利息、住房租金和贍養(yǎng)老人等六項專項附加扣除.其中贍養(yǎng)老人一項指納稅人贍養(yǎng)60歲(含)以上父母及其他法定贍養(yǎng)人的贍養(yǎng)支出,可按照以下標(biāo)準(zhǔn)扣除:納稅人為獨生子女的,按照每月2000元的標(biāo)準(zhǔn)定額扣除;納稅人為非獨生子女的,由其與兄弟姐妹分攤每月2000元的扣除額度,每人分攤的額度不能超過每月1000元.某納稅人為獨生子,且僅符合規(guī)定中的贍養(yǎng)老人的條件,如果他在2019年10月份應(yīng)繳納個人所得稅款為390元,那么他當(dāng)月的工資、薪金稅后所得是______元.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某芯片公司對今年新開發(fā)的一批5G手機芯片進行測評,該公司隨機調(diào)查了100顆芯片,并將所得統(tǒng)計數(shù)據(jù)分為五個小組(所調(diào)查的芯片得分均在內(nèi)),得到如圖所示的頻率分布直方圖,其中.
(1)求這100顆芯片評測分數(shù)的平均數(shù)(同一組中的每個數(shù)據(jù)可用該組區(qū)間的中點值代替).
(2)芯片公司另選100顆芯片交付給某手機公司進行測試,該手機公司將每顆芯片分別裝在3個工程手機中進行初測。若3個工程手機的評分都達到11萬分,則認定該芯片合格;若3個工程手機中只要有2個評分沒達到11萬分,則認定該芯片不合格;若3個工程手機中僅1個評分沒有達到11萬分,則將該芯片再分別置于另外2個工程手機中進行二測,二測時,2個工程手機的評分都達到11萬分,則認定該芯片合格;2個工程手機中只要有1個評分沒達到11萬分,手機公司將認定該芯片不合格.已知每顆芯片在各次置于工程手機中的得分相互獨立,并且芯片公司對芯片的評分方法及標(biāo)準(zhǔn)與手機公司對芯片的評分方法及標(biāo)準(zhǔn)都一致(以頻率作為概率).每顆芯片置于一個工程手機中的測試費用均為300元,每顆芯片若被認定為合格或不合格,將不再進行后續(xù)測試,現(xiàn)手機公司測試部門預(yù)算的測試經(jīng)費為10萬元,試問預(yù)算經(jīng)費是否足夠測試完這100顆芯片?請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),,則下列說法中錯誤的是( )
A.有個零點B.最小值為
C.在區(qū)間單調(diào)遞減D.的圖象關(guān)于軸對稱
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知兩定點,,點P滿足.
(1)求點P的軌跡C的方程;
(2)若,直線l與軌跡C交于A,B兩點,,的斜率之和為2,問直線l是否恒過定點,若過定點,求出定點的坐標(biāo);若不過定點,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,直四棱柱的底面是邊長為2的菱形,,.、分別為和的中點.平面與棱所在直線交于點.
(1)求證:平面平面;
(2)求直線與平面所成角的正弦值;
(3)判斷點是否與點重合.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,傾斜角為的直線的參數(shù)方程為(為參數(shù)).以坐標(biāo)原點為極點,以軸的正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程是.
(Ⅰ)寫出直線的普通方程和曲線的直角坐標(biāo)方程;
(Ⅱ)若直線經(jīng)過曲線的焦點且與曲線相交于兩點,設(shè)線段的中點為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,是正方形,點在以為直徑的半圓弧上(不與,重合),為線段的中點,現(xiàn)將正方形沿折起,使得平面平面.
(1)證明:平面.
(2)三棱錐的體積最大時,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)).以坐標(biāo)原點為極點,軸的非負半軸為極軸且取相同的單位長度建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求直線的普通方程和曲線的直角坐標(biāo)方程;
(2)設(shè)是曲線上任意一點,直線與兩坐標(biāo)軸的交點分別為,求最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中.
(1)若是函數(shù)的導(dǎo)函數(shù)的零點,求的單調(diào)區(qū)間;
(2)若不等式對恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com