【題目】月某城市國際馬拉松賽正式舉行,組委會對名裁判人員進(年齡均在歲到歲)行業(yè)務培訓,現(xiàn)按年齡(單位:歲)進行分組統(tǒng)計:第,第,第,第,第,得到的頻率分布直方圖如下:

(1)若把這名裁判人員中年齡在稱為青年組,其中男裁判名;年齡在的稱為中年組,其中男裁判.試完成列聯(lián)表并判斷能否在犯錯誤的概率不超過的前提下認為裁判員屬于不同的組別(青年組或中年組)與性別有關系?

(2)培訓前組委會用分層抽樣調查方式在第組共抽取了名裁判人員進行座談,若將其中抽取的第組的人員記作,第組的人員記作,第組的人員記作,若組委會決定從上述名裁判人員中再隨機選人參加新聞發(fā)布會,要求這組各選人,試求裁判人員不同時被選擇的概率;

附:

【答案】(1)答案見解析;(2) .

【解析】試題分析:(1)先根據(jù)條件對應填數(shù)據(jù)得列聯(lián)表,再代入卡方公式求,最后比較參考數(shù)據(jù)作判斷(2)先根據(jù)分層抽樣得三組人數(shù),再根據(jù)枚舉法得總事件數(shù),從中確定三組各抽取一人事件數(shù),最后根據(jù)古典概型概率公式求概率

試題解析:(1)各組頻率分別為: ,這人中,來自各組的分別有人,青年組有名,中年組名, 列聯(lián)表如下:

合計

青年組

中年組

合計

故不能“在犯錯誤的概率不超過的前提下認為裁判員屬于不同的組別(青年組或中年組)與性別由關系”.

2)由頻率分布直方圖可知:第組的裁判人員分別為人, 人, .

由分層抽樣抽取人,則應從第組中分別抽取.

抽取的第組的人員為,第組的人員為,第組的人員為

分別從這三組各抽取一人有種情況

其中“裁判人員同時被選中”有種情況,

故裁判人員不同時被選中的概率為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知過點A(0,1)且斜率為k的直線l與圓C(x2)2(y3)21交于M,N兩點.

(1)k的取值范圍;

(2)12,其中O為坐標原點,求|MN|.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】中國有悠久的金石文化,印信是金石文化的代表之一.印信的形狀多為長方體、正方體或圓柱體,但南北朝時期的官員獨孤信的印信形狀是半正多面體(圖1.半正多面體是由兩種或兩種以上的正多邊形圍成的多面體.半正多面體體現(xiàn)了數(shù)學的對稱美.圖2是一個棱數(shù)為48的半正多面體,它的所有頂點都在同一個正方體的表面上,且此正方體的棱長為1.則該半正多面體共有________個面,其棱長為_________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,三棱柱ABCA1B1C1中,底面ABC為等腰直角三角形,ABAC=1,BB1=2,∠ABB1=60°.

(I) 證明:AB⊥平面AB1C;

(II) 若B1C=2,求AC1與平面BCB1所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐PABCD中,側面PAB⊥底面ABCD,底面ABCD為矩形,PAPB,OAB的中點,ODPC.

(Ⅰ) 求證:OCPD;

(II)若PD與平面PAB所成的角為30°,求二面角DPCB的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)(其中).

(1)討論的單調性;

(2)若對任意的,關于的不等式恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2020年初,新冠肺炎疫情襲擊全國,對人民生命安全和生產(chǎn)生活造成嚴重影響.在黨和政府強有力的抗疫領導下,我國控制住疫情后,一方面防止境外疫情輸入,另一方面逐步復工復產(chǎn),減輕經(jīng)濟下降對企業(yè)和民眾帶來的損失.為降低疫情影響,某廠家擬在2020年舉行某產(chǎn)品的促銷活動,經(jīng)調查測算,該產(chǎn)品的年銷售量(即該廠的年產(chǎn)量)萬件與年促銷費用萬元()滿足為常數(shù)),如果不搞促銷活動,則該產(chǎn)品的年銷售量只能是2萬件.已知生產(chǎn)該產(chǎn)品的固定投入為8萬元,每生產(chǎn)一萬件該產(chǎn)品需要再投入16萬元,廠家將每件產(chǎn)品的銷售價格定為每件產(chǎn)品年平均成本的1.5倍(此處每件產(chǎn)品年平均成本按元來計算)

1)將2020年該產(chǎn)品的利潤萬元表示為年促銷費用萬元的函數(shù);

2)該廠家2020年的促銷費用投入多少萬元時,廠家的利潤最大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知具有線性相關關系的兩個變量之間的幾組數(shù)據(jù)如下表所示:

2

4

6

8

10

3

6

7

10

12

1)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關于的線性回歸方程,并估計當時, 的值;

2)將表格中的數(shù)據(jù)看作五個點的坐標,則從這五個點中隨機抽取2個點,求恰有1個點落在直線右下方的概率.

參考公式: , .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,,,平面底面,.分別是的中點,求證:

(Ⅰ)底面;

(Ⅱ)平面;

(Ⅲ)平面平面.

查看答案和解析>>

同步練習冊答案