【題目】已知分別為三個內角的對邊,且.
(1)求;
(2)若為邊上的中線,,求的面積.
【答案】(1)(2)
【解析】
試題分析:(1)先由正弦定理將邊化為角:,再根據(jù)三角形內角關系消B角:,利用兩角和正弦公式展開化簡得,再利用配角公式得,解得(2)利用向量平行四邊形法則得,兩邊平方,根據(jù)向量數(shù)量積得;由同角關系得,再由正弦定理可得, 解方程組可得,代入面積公式可得
試題解析:(1)∵,由正弦定理得:
,即
,.........................3分
化簡得:,∴..................5分
在中,,∴,得.....................6分
(2)在中,,得...................7分
則........................8分
由正弦定理得............................9分
設,在中,由余弦定理得:
,則
,解得,
即.........................11分
故........................12分
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,曲線:與直線()交于,兩點.
(1)當時,分別求在點和處的切線方程;
(2)軸上是否存在點,使得當變動時,總有?說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】經(jīng)統(tǒng)計,某醫(yī)院一個結算窗口每天排隊結算的人數(shù)及相應的概率如下:
排除人數(shù) | 0--5 | 6--10 | 11--15 | 16--20 | 21--25 | 25人以上 |
概率 | 0.1 | 0.15 | 0.25 | 0.25 | 0.2 | 0.05 |
(1)求每天超過20人排隊結算的概率;
(2)求2天中,恰有1天出現(xiàn)超過20人排隊結算的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】A已知直線的參數(shù)方程為(為參數(shù)),在直角坐標系中,以為極點, 軸正半軸為極軸建立極坐標系,圓的方程為
(1)求圓的圓心的極坐標;
(2)判斷直線與圓的位置關系.
已知不等式的解集為
(1)求實數(shù)的值;
(2)若不等式對恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】以下四個命題:
①對立事件一定是互斥事件;
②函數(shù)的最小值為2;
③八位二進制數(shù)能表示的最大十進制數(shù)為256;
④在中,若, , ,則該三角形有兩解.
其中正確命題的個數(shù)為( )
A. 4 B. 3 C. 2 D. 1
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com