請考生在第22、23、24題中任選一題做答,如果多做,則按所

做的第一題記分.做答時(shí),用2B鉛筆在答題卡上把所選題目對應(yīng)的[來源:學(xué)科網(wǎng)ZXXK]

題號涂黑.

22.選修4-1:幾何證明選講

如圖,BA是⊙O的直徑,AD是切線,BF、BD是割線,

求證:BE??BF=BC??BD

23.選修4-4:坐標(biāo)系與參數(shù)方程

在拋物線y2=4a(x+a)(a>0),設(shè)有過原點(diǎn)O作一直線分別

交拋物線于A、B兩點(diǎn),如圖所示,試求|OA|??|OB|的最小值。

24.選修4—5;不等式選講

設(shè)|a|<1,函數(shù)f(x)=ax2+x-a(-1≤x≤1),證明:|f(x)|≤

22.證法一:連接CE,過B作⊙O的切線BG,則BG∥AD

∴∠GBC=∠FDB,又∠GBC=∠CEB      ∴∠CEB=∠FDB

又∠CBE是△BCE和△BDF的公共角   ∴△BCE∽△BDF ∴,即BE??BF=BC??BD

證法二:連續(xù)AC、AE,∵AB是直徑,AC是切線   ∴AB⊥AD,AC⊥BD,AE⊥BF

由射線定理有AB2=BC??BD,AB2=BE??BF         ∴BE??BF=BC??BD

  23.解:法一,(極坐標(biāo))sin2-4asin-4a2=0  ∴|OA||OB|=≤4a2

法二:(參數(shù)方程)[來源:Zxxk.Com]

代入y2=4a(x+a)中得:t2sin2-4atcos-4a2=0       |OA||OB|=|t1t2|=≤4a2

 24.證:|f(x)|=|a(x2-1)+x|≤|a(x2-1)|+|x|≤|x2-1|+|x|=1-x2+|x|=-(|x|-)2+

    ∴|f(x)|≤


解析:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

請考生在第22,23,24題中任選一題作答,如果多做,則按所做的第一題記分.作答時(shí)請寫清題號.
如圖,∠BAC的平分線與BC和外接圓分別相交于D和E,延長AC交過D,E,C三點(diǎn)的圓于點(diǎn)F.
(Ⅰ)求證:EF2=ED•EA;
(Ⅱ)若AE=6,EF=3,求AF•AC的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在(0,+∞)上的三個(gè)函數(shù)f(x)=lnx,g(x)=x2-af(x),h(x)=x-a
x
,且g(x)在x=1處取得極值.
(Ⅰ)求函數(shù)g(x)在x=2處的切線方程;
(Ⅱ)求函數(shù)h(x)的單調(diào)區(qū)間;
(Ⅲ)把h(x)對應(yīng)的曲線C1向上平移6個(gè)單位后得到曲線C2,求C2與g(x)對應(yīng)曲線C3的交點(diǎn)個(gè)數(shù),并說明理由.
請考生在第22、23、24題中任選一題作答,如果多做,則按所做的第一題記分.
作答時(shí),用2B鉛筆在答題卡上把所選題目對應(yīng)的題號涂黑.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•太原模擬)設(shè)函數(shù)f(x)=a(x+
1
x
)+2lnx,g(x)=x2

(1)若a=
1
2
時(shí),直線l與函數(shù)f(x)和函數(shù)g(x)的圖象相切于同一點(diǎn),求切線l的方程;
(2)若f(x)在[2,4]內(nèi)為單調(diào)函數(shù),求實(shí)數(shù)a的取值范圍.
說明:請考生在第22、23、24三題中任選一題作答,如果多做,則按所做第一題記分.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011屆河南省焦作市高三年級下學(xué)期第一次質(zhì)檢數(shù)學(xué)理卷 題型:解答題

(請考生在第22、23兩題中任選一題作答,如果多做。則按所做的第一題記分.
(本小題滿分10分)選修4-1:幾何證明選講
如圖:AB是⊙O的直徑,G是AB延長線上的一點(diǎn),GCD是⊙O的割線,過點(diǎn)G作AG的垂線,交直線AC于點(diǎn)E,交直線AD于點(diǎn)F,過點(diǎn)G作⊙O的切線,切點(diǎn)為H.求證:

(Ⅰ)C、D、F、E四點(diǎn)共圓;
(Ⅱ)GH2=GE·GF.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年海南省高三五校聯(lián)考數(shù)學(xué)(文) 題型:選擇題

選做題:請考生在第22,23,24題中任選一題做答,如果多做,則按所做的第一題記分

22.(本小題滿分10分)選修4—1幾何證明選講

如圖,AB是⊙O的直徑,AC是弦,∠BAC的平分線AD交⊙O于點(diǎn)D,DE⊥AC,交AC的延長線于點(diǎn)E,OE交AD于點(diǎn)F。

   (I)求證:DE是⊙O的切線;

   (II)若的值.

 

23.(本小題滿分10分)選修4—2坐標(biāo)系與參數(shù)方程

        設(shè)直角坐標(biāo)系原點(diǎn)與極坐標(biāo)極點(diǎn)重合, x軸正半軸與極軸重合,若已知曲線C的極坐標(biāo)方程為,點(diǎn)F1、F2為其左、右焦點(diǎn),直線l的參數(shù)方程為

   (I)求直線l的普通方程和曲線C的直角坐標(biāo)方程;

   (II)求曲線C上的動(dòng)點(diǎn)P到直線l的最大距離。

24.(本小題滿分10分)選修4—5不等式選講

        對于任意的實(shí)數(shù)恒成立,記實(shí)數(shù)M的最大值是m。

   (1)求m的值;

   (2)解不等式

 

查看答案和解析>>

同步練習(xí)冊答案