【題目】已知函數(shù)

(1)若,求曲線 在點處的切線方程;

(2)當時,討論函數(shù)的單調(diào)性。

【答案】(1) (2) 當時, 上單調(diào)遞增;

時,單調(diào)遞增區(qū)間為;單調(diào)遞減區(qū)間為;

時,單調(diào)遞增區(qū)間為;單調(diào)遞減區(qū)間為;

【解析】試題分析:(1)求出函數(shù)的導數(shù),計算的值,利用點斜式求出切線方程即可;(2)求出分三種情況討論的范圍,分別令求得 的范圍,可得函數(shù)增區(qū)間,令求得 的范圍,可得函數(shù)的減區(qū)間.

試題解析:(1)當時,,所以切線的斜率 ,

在點處的切線方程為,

。

(2),令,得,

①當時,恒成立,所以上單調(diào)遞增;

②當時,,由,得;由,得

所以單調(diào)遞增區(qū)間為;單調(diào)遞減區(qū)間為

③當時,,由,得;由,得,

所以單調(diào)遞增區(qū)間為;單調(diào)遞減區(qū)間為

綜上所述,當時,恒成立,所以上單調(diào)遞增;

時,單調(diào)遞增區(qū)間為;單調(diào)遞減區(qū)間為;

時,單調(diào)遞增區(qū)間為;單調(diào)遞減區(qū)間為;

【方法點晴】本題主要考查利用導數(shù)求曲線切線方程以及利用導數(shù)研究函數(shù)的單調(diào)性,屬于中檔題. 求曲線切線方程的一般步驟是:(1)求出處的導數(shù),即在點 出的切線斜率(當曲線處的切線與軸平行時,在 處導數(shù)不存在,切線方程為);(2)由點斜式求得切線方程.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) ,
(Ⅰ)若關于 的不等式 恒成立,求實數(shù) 的取值范圍;
(Ⅱ)若關于 的一次二次方程 有實根,求實數(shù) 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)若,求函數(shù)的極值;

2)若函數(shù)有兩個零點,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知.

I)若,求曲線在點處的切線方程.

II)若,求函數(shù)的單調(diào)區(qū)間.

III)若不等式恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】中國古代數(shù)學名著《九章算術》中有這樣一個問題:今有牛、馬、羊食人苗,苗主責之粟五斗,羊主曰:“我羊食半馬.”馬主曰:“我馬食半牛.”今欲衰償之,問各出幾何?此問題的譯文是:今有牛、馬、羊吃了別人的禾苗,禾苗主人要求賠償5斗粟.羊主人說:“我羊所吃的禾苗只有馬的一半.”馬主人說:“我馬所吃的禾苗只有牛的一半.”打算按此比例償還,他們各應償還多少?已知牛、馬、羊的主人各應償還升, 升, 升,1斗為10升,則下列判斷正確的是( )

A. , 依次成公比為2的等比數(shù)列,且

B. , 依次成公比為2的等比數(shù)列,且

C. , 依次成公比為的等比數(shù)列,且

D. , 依次成公比為的等比數(shù)列,且

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓經(jīng)過點M(﹣2,﹣1),離心率為.過點M作傾斜角互補的兩條直線分別與橢圓C交于異于M的另外兩點P、Q.

(Ⅰ)求橢圓C的方程;

(Ⅱ)試判斷直線PQ的斜率是否為定值,證明你的結論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,拋物線C的頂點是原點O,以x軸為對稱軸,且經(jīng)過點P(1,2).

(1)求拋物線C的方程;

設點A,B在拋物線C上,直線PA,PB分別與y軸交于點MN,|PM|=|PN|.求直線AB的斜率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)討論的單調(diào)區(qū)間;

(2)當時,證明: .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】平面直角坐標系中,經(jīng)過橢圓 的一個焦點的直線相交于兩點, 的中點,且斜率是.

()求橢圓的方程;

()直線分別與橢圓和圓 相切于點,求的最大值.

查看答案和解析>>

同步練習冊答案