【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)).以直角坐標(biāo)系原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為

(Ⅰ)寫出曲線的極坐標(biāo)方程和曲線的直角坐標(biāo)方程;

(Ⅱ)設(shè)點(diǎn)上,點(diǎn)上,且,求面積的最大值.

【答案】(1),;(2)

【解析】

(1)直接利用轉(zhuǎn)換關(guān)系,把參數(shù)方程直角坐標(biāo)方程和極坐標(biāo)方程之間進(jìn)行轉(zhuǎn)換.

(2)直接利用(1)的結(jié)論和三角形的面積公式的應(yīng)用求出結(jié)果.

1)曲線C1的參數(shù)方程為(α為參數(shù)),

轉(zhuǎn)換為直角坐標(biāo)方程為:(x-22+y2=4,

轉(zhuǎn)換為極坐標(biāo)方程為:ρ=4cosθ.

曲線C2的極坐標(biāo)方程為ρ=2sinθ

轉(zhuǎn)換為直角坐標(biāo)方程為:x2+y2-2y=0

2)點(diǎn)PC1上,點(diǎn)QC2上,且∠POQ=,

則:=,

因?yàn)?/span>,所以,

所以

當(dāng)時(shí),此時(shí)的面積由最大值,

此時(shí)最大值為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2018安徽江南十校高三3月聯(lián)考線段為圓 的一條直徑,其端點(diǎn) 在拋物線 上,且 兩點(diǎn)到拋物線焦點(diǎn)的距離之和為

I)求直徑所在的直線方程;

II)過點(diǎn)的直線交拋物線, 兩點(diǎn),拋物線, 處的切線相交于點(diǎn),求面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】全國糖酒商品交易會將在四川舉辦.展館附近一家川菜特色餐廳為了研究參會人數(shù)與本店所需原材料數(shù)量的關(guān)系,在交易會前查閱了最近5次交易會的參會人數(shù)(萬人)與餐廳所用原材料數(shù)量(袋),得到如下數(shù)據(jù):

舉辦次數(shù)

第一次

第二次

第三次

第四次

第五次

參會人數(shù)(萬人)

11

9

8

10

12

原材料(袋)

28

23

20

25

29

(Ⅰ)請根據(jù)所給五組數(shù)據(jù),求出關(guān)于的線性回歸方程;

(Ⅱ)若該店現(xiàn)有原材料12袋,據(jù)悉本次交易會大約有13萬人參加,為了保證原材料能夠滿足需要,則該店應(yīng)至少再補(bǔ)充原材料多少袋?

(參考公式:,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)M為滿足下列條件的函數(shù)構(gòu)成的集合,存在實(shí)數(shù),使得.

1)判斷是否為M中的元素,并說明理由;

2)設(shè),求實(shí)數(shù)a的取值范圍;

3)已知的圖象與的圖象交于點(diǎn),,證明:中的元素,并求出此時(shí)的值(用表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下面幾種推理中是演繹推理的為( )

A. 由金、銀、銅、鐵可導(dǎo)電,猜想:金屬都可導(dǎo)電

B. 猜想數(shù)列的通項(xiàng)公式為

C. 半徑為的圓的面積,則單位圓的面積

D. 由平面直角坐標(biāo)系中圓的方程為,推測空間直角坐標(biāo)系中球的方程為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】十九大提出,堅(jiān)決打贏脫貧攻堅(jiān)戰(zhàn),某幫扶單位為幫助定點(diǎn)扶貧村真脫貧,堅(jiān)持扶貧同扶智相結(jié)合,幫助貧困村種植蜜柚,并利用電商進(jìn)行銷售,為了更好地銷售,現(xiàn)從該村的蜜柚樹上隨機(jī)摘下了100個(gè)蜜柚進(jìn)行測重,其質(zhì)量分別在, , , , (單位:克)中,其頻率分布直方圖如圖所示.

(1)按分層抽樣的方法從質(zhì)量落在 的蜜柚中抽取5個(gè),再從這5個(gè)蜜柚中隨機(jī)抽取2個(gè),求這2個(gè)蜜柚質(zhì)量均小于2000克的概率;

(2)以各組數(shù)據(jù)的中間數(shù)代表這組數(shù)據(jù)的平均水平,以頻率代表概率,已知該貧困村的蜜柚樹上大約還有5000個(gè)蜜柚等待出售,某電商提出兩種收購方案:

A.所有蜜柚均以40元/千克收購;

B.低于2250克的蜜柚以60元/個(gè)收購,高于或等于2250克的以80元/個(gè)收購.

請你通過計(jì)算為該村選擇收益最好的方案.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在一個(gè)文藝比賽中,12名專業(yè)人士和12名觀眾代表各組成一個(gè)評委小組,給參賽選手打分,下面是兩組評委對同一名選手的打分:

小組A 42 45 48 46 52 47 49 55 42 51 47 45

小組B 55 36 70 66 75 49 46 68 42 62 58 47

1)選擇一個(gè)可以度量每一組評委打分相似性的量,并對每組評委的打分計(jì)算度量值.

2)你能據(jù)此判斷小組A和小組B中哪一個(gè)更像是由專業(yè)人土組成的嗎?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知菱形和矩形所在的平面互相垂直,,.

(1)求直線與平面的夾角;

(2)求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)為常數(shù))的圖象在它們與坐標(biāo)軸交點(diǎn)處的切線互相平行.

(1)若關(guān)于的不等式有解,求實(shí)數(shù)的取值范圍;

(2)對于函數(shù)公共定義域內(nèi)的任意實(shí)數(shù),我們把的值稱為兩函數(shù)在處的瞬間距離”.則函數(shù)的所有瞬間距離是否都大于2?請加以證明.

查看答案和解析>>

同步練習(xí)冊答案