【題目】在平面直角坐標(biāo)系中,以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系.已知點的直角坐標(biāo)為,曲線的極坐標(biāo)方程為,直線過點且與曲線相交于,兩點.

(1)求曲線的直角坐標(biāo)方程;

(2)若,求直線的直角坐標(biāo)方程.

【答案】(1) (2) 直線的直角坐標(biāo)方程為

【解析】分析:(1)根據(jù)極坐標(biāo)和直角坐標(biāo)間的轉(zhuǎn)化公式可得所求.(2)根據(jù)題意設(shè)出直線的參數(shù)方程,代入圓的方程后得到關(guān)于參數(shù)的二次方程,根據(jù)根與系數(shù)的關(guān)系和弦長公式可求得傾斜角的三角函數(shù)值,進(jìn)而可得直線的直角坐標(biāo)方程.

詳解:(1)由,可得,得,

∴曲線的直角坐標(biāo)方程為.

(2)由題意設(shè)直線的參數(shù)方程為為參數(shù)),

將參數(shù)方程①代入圓的方程,

,

∵直線與圓交于,兩點,

設(shè),兩點對應(yīng)的參數(shù)分別為,,

,

,

化簡有

解得,

∴直線的直角坐標(biāo)方程為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】拋物線的弦與過弦的端點的兩條切線所圍成的三角形常被稱為阿基米德三角形,阿基米德三角形有一些有趣的性質(zhì),如:若拋物線的弦過焦點,則過弦的端點的兩條切線的交點在其準(zhǔn)線上.設(shè)拋物線 ,弦AB過焦點,△ABQ為其阿基米德三角形,則△ABQ的面積的最小值為

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓.

(1)若直線過定點,且與圓相切,求的方程;

(2)若圓的半徑為,圓心在直線上,且與圓外切,求圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知公比不為1的等比數(shù)列{an}的前5項積為243,且2a3為3a2和a4的等差中項.
(1)求數(shù)列{an}的通項公式an;
(2)若數(shù)列{bn}滿足bn=bn1log3an+2(n≥2且n∈N*),且b1=1,求數(shù)列 的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某險種的基本保費為(單位:元),繼續(xù)購買該險種的投保人稱為續(xù)保人,續(xù)保人本年度的保費與其上年度出險次數(shù)的關(guān)聯(lián)如下:

上年度出險次數(shù)

0

1

2

3

4

保費

設(shè)該險種一續(xù)保人一年內(nèi)出險次數(shù)與相應(yīng)概率如下:

一年內(nèi)出險次數(shù)

0

1

2

3

4

概率

0.30

0.15

0.20

0.20

0.10

0.05

(1)求一續(xù)保人本年度的保費高于基本保費的概率;

(2)已知一續(xù)保人本年度的保費高于基本保費,求其保費比基本保費高出的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線C1 (參數(shù)θ∈R),以坐標(biāo)原點O為極點,x軸的非負(fù)半軸為極軸,建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為 ,點Q的極坐標(biāo)為
(1)將曲線C2的極坐標(biāo)方程化為直角坐標(biāo)方程,并求出點Q的直角坐標(biāo);
(2)設(shè)P為曲線C1上的點,求PQ中點M到曲線C2上的點的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校200名學(xué)生的數(shù)學(xué)期中考試成績頻率分布直方圖如圖所示,其中成績分組區(qū)間是,,,.

1)求圖中的值;

2)根據(jù)頻率分布直方圖,估計這200名學(xué)生的平均分;

3)若這200名學(xué)生的數(shù)學(xué)成績中,某些分?jǐn)?shù)段的人數(shù)與英語成績相應(yīng)分?jǐn)?shù)段的人數(shù)之比如下表所示,求英語成績在的人數(shù).

分?jǐn)?shù)段

1:2

2:1

6:5

1:2

1:1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了響應(yīng)黨的十九大所提出的教育教學(xué)改革,某校啟動了數(shù)學(xué)教學(xué)方法的探索,學(xué)校將髙一年級部分生源情況基本相同的學(xué)生分成甲、乙兩個班,每班40人,甲班按原有傳統(tǒng)模式教學(xué),乙班實施自主學(xué)習(xí)模式.經(jīng)過一年的教學(xué)實驗,將甲、乙兩個班學(xué)生一年來的數(shù)學(xué)成績?nèi)∑骄鶖?shù),兩個班學(xué)生的平均成績均在[50,100],按照區(qū)間[50,60),[60,70),[70,80),[80,90),[90,100]進(jìn)行分組,繪制成如下頻率分布直方圖,規(guī)定不低于80(百分制)為優(yōu)秀,

(I)完成表格,并判斷是否有90%以上的把握認(rèn)為數(shù)學(xué)成績優(yōu)秀與教學(xué)改革有關(guān)

〔Ⅱ)從乙班[70,80),[80,90),[90,100]分?jǐn)?shù)段中,按分層抽樣隨機抽取7名學(xué)生座談,

從中選三位同學(xué)發(fā)言,記來自[80,90)發(fā)言的人數(shù)為隨機變量x,求x的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】有甲、乙兩個游戲項目,要參與游戲,均需每次先付費元(不返還),游戲甲有種結(jié)果:可能獲得元,可能獲得元,可能獲得元,這三種情況的概率分別為,,;游戲乙有種結(jié)果:可能獲得元,可能獲得元,這兩種情況的概率均為.

(1)某人花元參與游戲甲兩次,用表示該人參加游戲甲的收益(收益=參與游戲獲得錢數(shù)-付費錢數(shù)),求的概率分布及期望;

(2)用表示某人參加次游戲乙的收益,為任意正整數(shù),求證:的期望為.

查看答案和解析>>

同步練習(xí)冊答案