【題目】已知公比不為1的等比數(shù)列{an}的前5項積為243,且2a3為3a2和a4的等差中項.
(1)求數(shù)列{an}的通項公式an;
(2)若數(shù)列{bn}滿足bn=bn﹣1log3an+2(n≥2且n∈N*),且b1=1,求數(shù)列 的前n項和Sn .
【答案】
(1)解:由前5項積為243,即為a1a2a3a4a5=243,
即有a1a5=a2a4=a32,即a35=243,
得:a3=3,設(shè)等比數(shù)列的公比為q,
由2a3為3a2和a4的等差中項得:4a3=3a2+a4,
即 ,
由公比不為1,解得:q=3,
所以an=a3qn﹣3,
即
(2)解:由bn=bn﹣1log3an+2=bn﹣1n,
得 ,
數(shù)列 ,
所以它的前n項和
【解析】(1)運用等比數(shù)列的性質(zhì)可得a3=3,設(shè)等比數(shù)列的公比為q,運用等差數(shù)列中項的性質(zhì),結(jié)合等比數(shù)列通項公式,解得q=3,即可得到所求數(shù)列{an}的通項公式;(2)求得bn=bn﹣1log3an+2=bn﹣1n,運用數(shù)列恒等式bn=b1 … =n!,求出 ,運用裂項相消求和即可得到所求和.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知在平面直角坐標(biāo)系xOy中,以O(shè)為極點,x軸的正半軸為極軸,建立極坐標(biāo)系.曲線C1的極坐標(biāo)方程為ρ=4cosθ,直線l: ( 為參數(shù)).
(1)求曲線C1的直角坐標(biāo)方程及直線l的普通方程;
(2)若曲線C2的參數(shù)方程為 (α為參數(shù)),曲線P(x0 , y0)上點P的極坐標(biāo)為 ,Q為曲線C2上的動點,求PQ的中點M到直線l距離的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點F(1,0),點A是直線l1:x=﹣1上的動點,過A作直線l2 , l1⊥l2 , 線段AF的垂直平分線與l2交于點P.
(Ⅰ)求點P的軌跡C的方程;
(Ⅱ)若點M,N是直線l1上兩個不同的點,且△PMN的內(nèi)切圓方程為x2+y2=1,直線PF的斜率為k,求 的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)是定義域為(0,+∞)的單調(diào)函數(shù),若對任意的x∈(0,+∞),都有 ,且方程|f(x)﹣3|=x3﹣6x2+9x﹣4+a在區(qū)間(0,3]上有兩解,則實數(shù)a的取值范圍是( )
A.0<a≤5
B.a<5
C.0<a<5
D.a≥5
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在三棱柱ABC﹣A1B1C1中,已知側(cè)面ABB1A1是菱形,側(cè)面BCC1B1是正方形,點A1在底面ABC的投影為AB的中點D.
(1)證明:平面AA1B1B⊥平面BB1C1C;
(2)設(shè)P為B1C1上一點,且 ,求二面角A1﹣AB﹣P的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系.已知點的直角坐標(biāo)為,曲線的極坐標(biāo)方程為,直線過點且與曲線相交于,兩點.
(1)求曲線的直角坐標(biāo)方程;
(2)若,求直線的直角坐標(biāo)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠新研發(fā)了一種產(chǎn)品,該產(chǎn)品每件成本為5元,將該產(chǎn)品按事先擬定的價格進(jìn)行銷售,得到如下數(shù)據(jù):
單價(元) | 8 | 8.2 | 8.4 | 8.6 | 8.8 | 9 |
銷量(件) | 90 | 84 | 83 | 80 | 75 | 68 |
(1)求銷量(件)關(guān)于單價(元)的線性回歸方程;
(2)若單價定為10元,估計銷量為多少件;
(3)根據(jù)銷量關(guān)于單價的線性回歸方程,要使利潤最大,應(yīng)將價格定為多少?
參考公式:,.參考數(shù)據(jù):,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)問:能否為偶函數(shù)?請說明理由;
(2)總存在一個區(qū)間,當(dāng)時,對任意的實數(shù),方程無解,當(dāng)時,存在實數(shù),方程有解,求區(qū)間.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com