【題目】如圖,在正方體中,點是棱上的一個動點,平面交棱于點.下列命題正確的為_______________.

①存在點,使得//平面;

②對于任意的點,平面平面;

③存在點,使得平面;

④對于任意的點,四棱錐的體積均不變.

【答案】①②④

【解析】

根據(jù)線面平行和線面垂直的判定定理,以及面面垂直的判定定理和性質(zhì)分別進行判斷即可.

①當(dāng)為棱上的一中點時,此時也為棱上的一個中點此時//,滿足//平面,故①正確;

②連結(jié),則平面,因為平面,所以平面平面,故②正確;

平面,不可能存在點,使得平面,故③錯誤;

④四棱錐的體積等于,設(shè)正方體的棱長為1.

∵無論在何點,三角形的面積為為定值,三棱錐的高,保持不變,三角形的面積為為定值,三棱錐的高為,保持不變.

∴四棱錐的體積為定值,故④正確.

故答案為①②④.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的焦距為,點在橢圓上,且的最小值是為坐標原點).

1)求橢圓的標準方程.

2)已知動直線與圓相切,且與橢圓交于,兩點.是否存在實數(shù),使得?若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知正項數(shù)列的前n項和為,數(shù)列滿足.

1)求數(shù)列的通項公式;

2)數(shù)列滿足,它的前n項和為,若存在正整數(shù)n,使不等式成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示的多面體中,是菱形, 是矩形,平面,,.

(1)求證:平面平面

(2)在線段上取一點,當(dāng)二面角的大小為時,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),.

(1)討論函數(shù)的單調(diào)性;

(2)若不等式上恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法中正確的個數(shù)是_________.

1)命題“若,則方程有實數(shù)根”的逆否命題為“若方程無實數(shù)根,則.

2)命題“,”的否定“.

3)若為假命題,則,均為假命題.

4)“”是“直線與直線平行”的充要條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】把一顆骰子投擲2次,觀察出現(xiàn)的點數(shù),并記第一次出現(xiàn)的點數(shù)為,第二次出現(xiàn)的點數(shù)為,試就方程組解答下列各題:

1)求方程組只有一個解的概率;

2)求方程組只有正數(shù)解的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(Ⅰ)若內(nèi)單調(diào)遞減,求實數(shù)的取值范圍;

(Ⅱ)若函數(shù)有兩個極值點分別為,,證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,點F為橢圓C(ab0)的左焦點,點AB分別為橢圓C的右頂點和上頂點,點P(,)在橢圓C上,且滿足OPAB

1)求橢圓C的方程;

2)若過點F的直線l交橢圓CD,E兩點(點D位于x軸上方),直線ADAE的斜率分別為,且滿足=﹣2,求直線l的方程.

查看答案和解析>>

同步練習(xí)冊答案