【題目】我們學習了二元基本不等式:設,,,當且僅當時,等號成立利用基本不等式可以證明不等式,也可以利用“和定積最大,積定和最小”求最值.

(1)對于三元基本不等式請猜想:設 當且僅當時,等號成立(把橫線補全).

(2)利用(1)猜想的三元基本不等式證明:

求證:

(3)利用(1)猜想的三元基本不等式求最值:

的最大值.

【答案】12)證明見解析(3

【解析】

1)通過類比推理,得到結(jié)果;

2)利用(1)可得,相乘后,整理即得證

3)先利用,得到,,反向使用(1,整理后即可得到最值

1)通過類比,可以得到當,,,當且僅當,等號成立;

2)證明:,,,由(1)可得,

3)解:由(1)可得,,,由題,已知,,,,,,

當且僅當,時取等,的最大值為

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓C: (a>b>0)的短軸長為2,過上頂點E和右焦點F的直線與圓M:x2+y2﹣4x﹣2y+4=0相切.
(Ⅰ)求橢圓C的標準方程;
(Ⅱ)若直線l過點(1,0),且與橢圓C交于點A,B,則在x軸上是否存在一點T(t,0)(t≠0),使得不論直線l的斜率如何變化,總有∠OTA=∠OTB (其中O為坐標原點),若存在,求出 t的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)上單調(diào)遞減.

(1)求參數(shù)的取值范圍;

(2)請畫出的示意圖,若關(guān)于的方程恰有兩個不相等的實數(shù)解,請根據(jù)圖象說明的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)yf(x)的定義域為R,x<0f(x)>1,且對任意的實數(shù)x、yR,等式f(x)f(y)=f(xy)恒成立.若數(shù)列{an}滿足a1f(0),f(an1)=a2 017的值為(  )

A. 4 033 B. 3 029 C. 2 249 D. 2 209

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】,

(Ⅰ)求證:;

(Ⅱ)求證:;

(Ⅲ)在(Ⅱ)中的不等式中,能否找到一個代數(shù)式,滿足所求式?若能,請直接寫出該代數(shù)式;若不能,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)試確定函數(shù)在(0,+∞)上的單調(diào)性;

(2)若,函數(shù)在(0,2)上有極值,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知定義域為R的函數(shù)是奇函數(shù)。

(1)求a的值.

(2)判斷函數(shù)fx)在R上的單調(diào)性并證明你的結(jié)論.

(3)求函數(shù)fx)在R上的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】件產(chǎn)品,其中件是次品,其余都是合格品,現(xiàn)不放回的從中依次抽.求:(1)第一次抽到次品的概率;

2)第一次和第二次都抽到次品的概率;

3)在第一次抽到次品的條件下,第二次抽到次品的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知向量 =(sinx,﹣1), =(2cosx,1).
(1)若 ,求tanx的值;
(2)若 ,又x∈[π,2π],求sinx+cosx的值.

查看答案和解析>>

同步練習冊答案