【題目】某校為了解校園安全教育系列活動的成效,對全校學生進行了一次安全意識測試,根據(jù)測試成績評定“合格”“不合格”兩個等級,同時對相應等級進行量化:“合格”記5分,“不合格”記0分.現(xiàn)隨機抽取部分學生的答卷,統(tǒng)計結果及對應的頻率分布直方圖如下:
等級 | 不合格 | 合格 | ||
得分 | ||||
頻數(shù) | 6 | 24 |
(1)由該題中頻率分布直方圖求測試成績的平均數(shù)和中位數(shù);
(2)其他條件不變,在評定等級為“合格”的學生中依次抽取2人進行座談,每次抽取1人,求在第1次抽取的測試得分低于80分的前提下,第2次抽取的測試得分仍低于80分的概率;
(3)用分層抽樣的方法,從評定等級為“合格”和“不合格”的學生中抽取10人進行座談.現(xiàn)再從這10人中任選4人,記所選4人的量化總分為,求的數(shù)學期望.
【答案】(1)64,65;(2);(3).
【解析】
(1)根據(jù)頻率分布直方圖及其性質(zhì)可求出,平均數(shù),中位數(shù);
(2)設“第1次抽取的測試得分低于80分”為事件,“第2次抽取的測試得分低于80分”為事件,由條件概率公式可求出;
(3)從評定等級為“合格”和“不合格”的學生中隨機抽取10人進行座談,其中“不合格”的學生數(shù)為,“合格”的學生數(shù)為6;由題意可得,5,10,15,20,利用“超幾何分布”的計算公式即可得出概率,進而得出分布列與數(shù)學期望.
由題意知,樣本容量為,
.
(1)平均數(shù)為,
設中位數(shù)為,因為,所以,則,
解得.
(2)由題意可知,分數(shù)在內(nèi)的學生有24人,分數(shù)在內(nèi)的學生有12人.設“第1次抽取的測試得分低于80分”為事件,“第2次抽取的測試得分低于80分”為事件,
則,所以.
(3)在評定等級為“合格”和“不合格”的學生中用分層抽樣的方法抽取10人,則“不合格”的學生人數(shù)為,“合格”的學生人數(shù)為.
由題意可得的所有可能取值為0,5,10,15,20.
,
.
所以的分布列為
0 | 5 | 10 | 15 | 20 | |
.
科目:高中數(shù)學 來源: 題型:
【題目】圓:()過點,離心率為,其左、右焦點分別為,,且過焦點的直線交橢圓于,.
(Ⅰ)求橢圓的方程;
(Ⅱ)若點的坐標為,設直線與直線的斜率分別為,試證明:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】分形幾何學是數(shù)學家伯努瓦·曼得爾布羅在20世紀70年代創(chuàng)立的一門新的數(shù)學學科,它的創(chuàng)立為解決傳統(tǒng)科學眾多領域的難題提供了全新的思路.按照如圖甲所示的分形規(guī)律可得如圖乙所示的一個樹形圖:記圖乙中第行黑圈的個數(shù)為,則(1)_______;(2)______.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】隨著我國經(jīng)濟的發(fā)展,居民收入逐年增長.某地區(qū)2014年至2018年農(nóng)村居民家庭人均純收入(單位:千元)的數(shù)據(jù)如下表:
年份 | 2014 | 2015 | 2016 | 2017 | 2018 |
年份代號 | 1 | 2 | 3 | 4 | 5 |
人均純收入 | 5 | 4 | 7 | 8 | 10 |
(1)求關于的線性回歸方程;
(2)利用(1)中的回歸方程,分析2014年至2018年該地區(qū)農(nóng)村居民家庭人均純收入的變化情況,并預測2019年該地區(qū)農(nóng)村居民家庭人均純收入為多少?
附:回歸直線的斜率和截距的最小二乘估計公式分別為,.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),.
(1)討論函數(shù)的單調(diào)性;
(2)當時,函數(shù)在區(qū)間的最小值為,試比較與的大小.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com