【題目】某工廠為了對研發(fā)的一種產(chǎn)品進行合理定價,將該產(chǎn)品按事先擬定的價格進行試銷,得到如下數(shù)據(jù):

單價x

9

9.2

9.4

9.6

9.8

10

銷量y

100

94

93

90

85

78

附:對于一組數(shù)據(jù),其回歸直線的斜率的最小二乘估計值為; 本題參考數(shù)值:.

1)若銷量y與單價x服從線性相關關系,求該回歸方程;

2)在(1)的前提下,若該產(chǎn)品的成本是5元/件,問:產(chǎn)品該如何確定單價,可使工廠獲得最大利潤.

【答案】1;(29.5.

【解析】

1)根據(jù)公式和已知計算出,即可得到回歸直線方程;

2)設該產(chǎn)品的售價為x元,工廠利潤為L元,當時,利潤,定價不合理,再根據(jù)銷量為正數(shù)可得.求出利潤關于定價的函數(shù)關系式后,利用基本不等式可得結果.

1)∵ ,

所以,

,

故回歸方程為.

2)設該產(chǎn)品的售價為x元,工廠利潤為L元,當時,利潤,定價不合理.

,故,

所以

當且僅當元時,取得最大值405元,

因此,為使工廠獲得最大利潤,該產(chǎn)品的單價應定為9.5

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某研究機構對高三學生的記憶力x和判斷力y進行統(tǒng)計分析,得下表數(shù)據(jù).

x

6

8

10

12

y

2

3

5

6

1)請根據(jù)上表提供的數(shù)據(jù),求出y關于x的線性回歸方程

2)判斷該高三學生的記憶力x和判斷力是正相關還是負相關;并預測判斷力為4的同學的記憶力.

(參考公式:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),

1)當時,求不等式的解集;

2)若不等式的解集包含[–1,1],求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】數(shù)列1,1,3,3,,,…,是由兩個1,兩個3,兩個,…,兩個按從小到大順序排列,數(shù)列各項的和記為,對于給定的自然數(shù),若能從數(shù)列中選取一些不同位置的項,使得這些項之和恰等于,便稱為一種選項方案,和數(shù)為的所有選項方案的種數(shù)記為.試求:

的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設數(shù)列滿足,,表示不超過的最大整數(shù),( )

A. 2018 B. 2019 C. 2020 D. 2021

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知某種氣墊船的最大航速是海里小時,船每小時使用的燃料費用和船速的平方成正比.若船速為海里小時,則船每小時的燃料費用為元,其余費用(不論船速為多少)都是每小時元。甲乙兩地相距海里,船從甲地勻速航行到乙地.

(1)試把船從甲地到乙地所需的總費用,表示為船速(海里小時)的函數(shù),并指出函數(shù)的定義域;

(2)當船速為每小時多少海里時,船從甲地到乙地所需的總費用最少?最少費用為多少元?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設奇函數(shù)上是增函數(shù),且,則不等式的解集為( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了研究某學科成績是否與學生性別有關,采用分層抽樣的方法,從高三年級抽取了30名男生和20名女生的該學科成績,得到如下所示男生成績的頻率分布直方圖和女生成績的莖葉圖,規(guī)定80分以上為優(yōu)分(含80分).

)(i)請根據(jù)圖示,將2×2列聯(lián)表補充完整;


優(yōu)分

非優(yōu)分

總計

男生




女生




總計



50

ii)據(jù)此列聯(lián)表判斷,能否在犯錯誤概率不超過10%的前提下認為該學科成績與性別有關?

)將頻率視作概率,從高三年級該學科成績中任意抽取3名學生的成績,求至少2名學生的成績?yōu)閮?yōu)分的概率.

附:


0.100

0.050

0.010

0.001


2.706

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列的前項和為把滿足條件的所有數(shù)列構成的集合記為.

(1)若數(shù)列通項為,求證

(2)若數(shù)列是等差數(shù)列,,的取值范圍;

(3)若數(shù)列的各項均為正數(shù),數(shù)列中是否存在無窮多項依次成等差數(shù)列,若存在,給出一個數(shù)列的通項;若不存在,說明理由.

查看答案和解析>>

同步練習冊答案