【題目】已知函數(shù)f(x)=xcos+a,a∈R.

(I)求曲線y=f(x)在點(diǎn)x=處的切線的斜率;

(II)判斷方程f '(x)=0(f '(x)為f(x)的導(dǎo)數(shù))在區(qū)間(0,1)內(nèi)的根的個(gè)數(shù),說(shuō)明理由;

(III)若函數(shù)F(x)=xsinx+cosx+ax在區(qū)間(0,1)內(nèi)有且只有一個(gè)極值點(diǎn),求a的取值范圍.

【答案】I. II1個(gè);III-cos1a<0.

【解析】試題分析:1)取出函數(shù)的導(dǎo)函數(shù),可得在點(diǎn)處的導(dǎo)數(shù)值,即可得到切線的斜率;

2)設(shè),求其導(dǎo)數(shù),可得當(dāng)時(shí), ,則函數(shù)為減函數(shù),結(jié)合,可得有且只有一個(gè),使成立,即方程在區(qū)間內(nèi)有且僅有一個(gè)實(shí)數(shù)解;

3)把函數(shù)在區(qū)間內(nèi)有且只有一個(gè)極值點(diǎn),轉(zhuǎn)化為在區(qū)間內(nèi)有且只有一個(gè)零點(diǎn),且兩側(cè)異號(hào),然后結(jié)合(2)中的單調(diào)性,列出不等式組,即可求解實(shí)數(shù)的取值范圍.

試題解析:

If 'x=cosx-xsinx·k=f '=.

II)設(shè)gx=f 'x),g' x=-sinx-sin x+xcosx=-2sinx-xcosx.

當(dāng)x∈0,1)時(shí),g 'x<0,則函數(shù)gx)為減函數(shù).

又因?yàn)?/span>g0=1>0,g1=cos1-sin1<0,

所以有且只有一個(gè)x00,1),使gx0=0成立.

所以函數(shù)gx)在區(qū)間(0,1)內(nèi)有且只有一個(gè)零點(diǎn),即方程f 'x=0在區(qū)間(0,1)內(nèi)有且只有一個(gè)實(shí)數(shù)根.

III)若函數(shù)Fx=xsinx+cosx+ax在區(qū)間(0,1)內(nèi)有且只有一個(gè)極值點(diǎn),由于F 'x=fx),即fx=xcosx+a在區(qū)間(0,1)內(nèi)有且只有一個(gè)零點(diǎn)x1,且fx)在x1兩側(cè)異號(hào).

因?yàn)楫?dāng)x∈01)時(shí),函數(shù)gx)為減函數(shù),所以在(0,x0)上,gx>gx0=0,即f 'x>0成立,函數(shù)fx)為增函數(shù);

在(x0,1)上,gx<gx0=0,即f 'x<0成立,函數(shù)fx)為減函數(shù).

則函數(shù)fx)在x=x0處取得極大值fx0.

當(dāng)fx0=0時(shí),雖然函數(shù)fx)在區(qū)間(0,1)內(nèi)有且只有一個(gè)零點(diǎn)x0,但fx)在x0兩側(cè)同號(hào),不滿足Fx)在區(qū)間(0,1)內(nèi)有且只有一個(gè)極值點(diǎn)的要求.

由于f1=a+cos1f0=a,顯然f1>f0.

若函數(shù)fx)在區(qū)間(01)內(nèi)有且只有一個(gè)零點(diǎn)x1,且fx)在x1兩側(cè)異號(hào),

則只需滿足:

.,解得-cos1a<0.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)的部分圖象如圖所示.

(1) 求函數(shù)的解析式;

(2) 如何由函數(shù)的通過(guò)適當(dāng)圖象的變換得到函數(shù)的圖象, 寫(xiě)出變換過(guò)程;

(3) 若,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)的圖像可以由y=cos2x的圖像先縱坐標(biāo)不變橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍,再橫坐標(biāo)不變縱坐標(biāo)伸長(zhǎng)到原來(lái)的2倍,最后向右平移個(gè)單位而得到.

⑴求f(x)的解析式與最小正周期

⑵求f(x)在x∈(0,π)上的值域與單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司生產(chǎn)一種產(chǎn)品,第一年投入資金1000萬(wàn)元,出售產(chǎn)品收入40萬(wàn)元,預(yù)計(jì)以后每年的投入資金是上一年的一半,出售產(chǎn)品所得收入比上一年多80萬(wàn)元,同時(shí),當(dāng)預(yù)計(jì)投入的資金低于20萬(wàn)元時(shí),就按20萬(wàn)元投入,且當(dāng)年出售產(chǎn)品收入與上一年相等.

(1)求第年的預(yù)計(jì)投入資金與出售產(chǎn)品的收入;

(2)預(yù)計(jì)從哪一年起該公司開(kāi)始盈利?(注:盈利是指總收入大于總投入)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=2lnx-ax2,若α,β都屬于區(qū)間[1,4],且β-α=1,f(α)=f(β),則實(shí)數(shù)a的取值范圍是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱柱ABCD-A1B1C1D1中,CDAB, ABBC,AB=BC=2CD=2,側(cè)棱AA1⊥平面ABCD.且點(diǎn)MAB1的中點(diǎn)

(1)證明:CM∥平面ADD1A1;

(2)求點(diǎn)M到平面ADD1A1的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為 (為參數(shù)),以為極點(diǎn), 軸的非負(fù)半軸為極軸的極坐標(biāo)系中,直線的極坐標(biāo)方程為.

(1)求曲線的極坐標(biāo)方程;

(2)設(shè)直線與曲線相交于兩點(diǎn),求的值.

【答案】(1)曲線的極坐標(biāo)方程為: ;(2)6.

【解析】試題分析:(1)先根據(jù)三角函數(shù)平方關(guān)系消參數(shù)得曲線的普通方程,再根據(jù)化為極坐標(biāo)方程;(2)將直線l的極坐標(biāo)方程代入曲線的極坐標(biāo)方程得,再根據(jù)的值.

試題解析:解:1)將方程消去參數(shù),

∴曲線的普通方程為,

代入上式可得,

∴曲線的極坐標(biāo)方程為: -

2)設(shè)兩點(diǎn)的極坐標(biāo)方程分別為,

消去

根據(jù)題意可得是方程的兩根,

,

型】解答
結(jié)束】
23

【題目】選修4—5:不等式選講

已知函數(shù)

(1)當(dāng)時(shí),求關(guān)于x的不等式的解集;

(2)若關(guān)于x的不等式有解,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)lnx,若函數(shù)f(x)[1e]上的最小值是,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】直角坐標(biāo)系xOy中,已知MN是圓C:(x2)2+(y3)2=2的一條弦,且CMCN,PMN的中點(diǎn).當(dāng)弦MN在圓C上運(yùn)動(dòng)時(shí),直線lxy5=0上總存在兩點(diǎn)A,B,使得恒成立,則線段AB長(zhǎng)度的最小值是_____.

查看答案和解析>>

同步練習(xí)冊(cè)答案