設(shè)函數(shù)
(1)若時,函數(shù)有三個互不相同的零點,求的取值范圍;
(2)若函數(shù)內(nèi)沒有極值點,求的取值范圍;
(3)若對任意的,不等式上恒成立,求實數(shù)的取值范圍.
(1);(2);(3).

試題分析:(1)時,,有三個互不相同的零點,即有三個互不相同的實數(shù)根,構(gòu)造函數(shù)確定函數(shù)的單調(diào)性,求函數(shù)的極值,從而確定的取值范圍;
(2)要使函數(shù)內(nèi)沒有極值點,只需上沒有實根即可,即的兩根不在區(qū)間上;
(3)求導函數(shù)來確定極值點,利用的取值范圍,求出上的最大值,再求滿足的取值范圍.
(1)當時,.
因為有三個互不相同的零點,所以,即有三個互不相同的實數(shù)根.
,則.
,解得;令,解得.
所以上為減函數(shù),在上為增函數(shù).
所以,.
所以的取值范圍是.
(2)因為,所以.
因為內(nèi)沒有極值點,所以方程在區(qū)間上沒有實數(shù)根,
,二次函數(shù)對稱軸
時,即,解得,
所以,或不合題意,舍去),解得.
所以的取值范圍是
(3)因為,所以,且時,.
又因為,所以上小于0,是減函數(shù);
上大于0,是增函數(shù);
所以,而,
所以,
又因為上恒成立,所以,即,即,在上恒成立.
因為上是減函數(shù),最小值為-87.
所以,即的取值范圍是.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù),其中a,b∈R
(1)當a=3,b=-1時,求函數(shù)f(x)的最小值;
(2)若曲線y=f(x)在點(e,f(e))處的切線方程為2x-3y-e=0(e=2.71828 為自然對數(shù)的底數(shù)),求a,b的值;
(3)當a>0,且a為常數(shù)時,若函數(shù)h(x)=x[f(x)+lnx]對任意的x1>x2≥4,總有成立,試用a表示出b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)請問,是否存在實數(shù)使上恒成立?若存在,請求實數(shù)的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)f(x)=ax-ln x,g(x)=,它們的定義域都是(0,e],其中e是自然對數(shù)的底e≈2.7,a∈R.
(1)當a=1時,求函數(shù)f(x)的最小值;
(2)當a=1時,求證:f(m)>g(n)+對一切m,n∈(0,e]恒成立;
(3)是否存在實數(shù)a,使得f(x)的最小值是3?如果存在,求出a的值;如果不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知是二次函數(shù),方程有兩個相等的實數(shù)根,且。
(1)求的表達式;
(2)若直線的圖象與兩坐標軸圍成的圖形面積二等分,求t的值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

曲線在點處的切線方程為               .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

求下列函數(shù)的導數(shù):
(1);
(2)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

函數(shù),則(    ).
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

若曲線處的切線平行于直線的坐標是_______.

查看答案和解析>>

同步練習冊答案