已知橢圓的兩個(gè)焦點(diǎn)坐標(biāo)分別是,,并且經(jīng)過點(diǎn),求它的標(biāo)準(zhǔn)方程.
.

試題分析:解題思路:根據(jù)條件設(shè)出橢圓的標(biāo)準(zhǔn)方程,再代點(diǎn)求系數(shù)即可.規(guī)律總結(jié):求圓錐曲線的標(biāo)準(zhǔn)方程通常用待定系數(shù)法,即先根據(jù)條件設(shè)出合適的標(biāo)準(zhǔn)方程,再根據(jù)題意得到關(guān)于系數(shù)的方程或方程組,解之積得.
試題解析:因?yàn)闄E圓的焦點(diǎn)在x軸上,所以設(shè)它的標(biāo)準(zhǔn)方程為
由橢圓的定義知,
所以
又因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824060032599337.png" style="vertical-align:middle;" />,
所以,
所以橢圓的標(biāo)準(zhǔn)方程為.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓 的離心率為,過的左焦點(diǎn)的直線被圓截得的弦長為.
(1)求橢圓的方程;
(2)設(shè)的右焦點(diǎn)為,在圓上是否存在點(diǎn),滿足,若存在,指出有幾個(gè)這樣的點(diǎn)(不必求出點(diǎn)的坐標(biāo));若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓C:=1(a>0,b>0)的離心率與雙曲線=1的一條漸近線的斜率相等以原點(diǎn)為圓心,橢圓的短半軸長為半徑的圓與直線sin·x+cos·y-l=0相切(為常數(shù)).
(1)求橢圓C的方程;
(2)若過點(diǎn)M(3,0)的直線與橢圓C相交TA,B兩點(diǎn),設(shè)P為橢圓上一點(diǎn),且滿足(O為坐標(biāo)原點(diǎn)),當(dāng)時(shí),求實(shí)數(shù)t取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)橢圓的焦點(diǎn)在軸上.
(1)若橢圓的焦距為1,求橢圓的方程;
(2)設(shè)分別是橢圓的左、右焦點(diǎn),為橢圓上的第一象限內(nèi)的點(diǎn),直線軸與點(diǎn),并且,證明:當(dāng)變化時(shí),點(diǎn)在某定直線上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

給定橢圓,稱圓心在坐標(biāo)原點(diǎn)O,半徑為的圓是橢圓C的“伴隨圓”,已知橢圓C的兩個(gè)焦點(diǎn)分別是.
(1)若橢圓C上一動(dòng)點(diǎn)滿足,求橢圓C及其“伴隨圓”的方程;
(2)在(1)的條件下,過點(diǎn)作直線l與橢圓C只有一個(gè)交點(diǎn),且截橢圓C的“伴隨圓”所得弦長為,求P點(diǎn)的坐標(biāo);
(3)已知,是否存在a,b,使橢圓C的“伴隨圓”上的點(diǎn)到過兩點(diǎn)的直線的最短距離.若存在,求出a,b的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知圓(x+1)2+y2=16,圓心為C(-1,0),點(diǎn)A(1,0),Q為圓上任意一點(diǎn),AQ的垂直平分線交CQ于點(diǎn)M,則點(diǎn)M的軌跡方程為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,設(shè)P是圓x2+y2=25上的動(dòng)點(diǎn),點(diǎn)D是P在x軸上的射影,M為PD上一點(diǎn),且|MD|=
4
5
|PD|
(Ⅰ)當(dāng)P在圓上運(yùn)動(dòng)時(shí),求點(diǎn)M的軌跡C的方程
(Ⅱ)求過點(diǎn)(3,0)且斜率
4
5
的直線被C所截線段的長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

在平面直角坐標(biāo)系中,動(dòng)點(diǎn)P和點(diǎn)M(-2,0)、N(2,0)滿足|
MN
|•|
MP
|+
MN
NP
=0
,則動(dòng)點(diǎn)P(x,y)的軌跡方程為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

橢圓的離心率為( )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案