【題目】設曲線上一點到焦點的距離為3

1)求曲線C方程;

2)設P,Q為曲線C上不同于原點O的任意兩點,且滿足以線段PQ為直徑的圓過原點O,試問直線PQ是否恒過定點?若恒過定點,求出定點坐標;若不恒過定點,說明理由.

【答案】(1)(2)直線恒過定點,詳見解析

【解析】

(1) 由拋物線定義得,可解得的值,從而得到拋物線的方程.
(2)為直徑的圓過原點,有,設直線的方程為,與曲線C方程聯(lián)立,得到點 的坐標,同理得到點 的坐標,寫出的方程,從而得到答案.

解:(1)由拋物線定義得,

解得,所以曲線C方程為

2為直徑的圓過原點

設直線的方程為,

與曲線C方程聯(lián)立,得

解得(舍去)或,則.

又直線的方程為,同理:.

又直線斜率存在,

的直線方程為

直線恒過定點.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖1,在梯形ABCD中,AB//CD,AB=3,CD=6,過A,B分別作CD的垂線,垂足分別為E,F,已知DE=1AE=3,將梯形ABCD沿AE,BF同側折起,使得平面ADE⊥平面ABFE,平面ADE∥平面BCF,得到圖2.

1)證明:BE//平面ACD

2)求三棱錐CAED的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,底面是等腰梯形,,點的中點,以為邊作正方形,且平面平面.

1)證明:平面平面.

2)求二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知三棱錐P-ABC(如圖一)的平面展開圖(如圖二)中,四邊形ABCD為邊長等于的正方形,均為正三角形,在三棱錐P-ABC中:

1)證明:平面平面ABC;

2)若點M在棱PA上運動,當直線BM與平面PAC所成的角最大時,求直線MA與平面MBC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】移動支付(支付寶及微信支付)已經漸漸成為人們購物消費的一種支付方式,為調查市民使用移動支付的年齡結構,隨機對100位市民做問卷調查得到列聯(lián)表如下:

1)將上列聯(lián)表補充完整,并請說明在犯錯誤的概率不超過010的前提下,認為支付方式與年齡是否有關?

2)在使用移動支付的人群中采用分層抽樣的方式抽取10人做進一步的問卷調查,從這10人隨機中選出3人頒發(fā)參與獎勵,設年齡都低于35歲(含35歲)的人數(shù)為,求的分布列及期望.

(參考公式:(其中

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐P-ABCD中,AB//CD,且.

(1)證明:平面PAB⊥平面PAD;

(2)若PA=PD=AB=DC, ,求二面角A-PB-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)是自然對數(shù)的底數(shù)).

(Ⅰ)討論極值點的個數(shù);

(Ⅱ)若的一個極值點,且,證明:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】甲同學參加化學競賽初賽,考試分為筆試、口試、實驗三個項目,各單項通過考試的概率依次為、、,筆試、口試、實驗通過考試分別記4分、2分、4分,沒通過的項目記0分,各項成績互不影響.

(Ⅰ)若規(guī)定總分不低于8分即可進入復賽,求甲同學進入復賽的概率;

(Ⅱ)記三個項目中通過考試的個數(shù)為,求隨機變量的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,某市建有貫穿東西和南北的兩條垂直公路,,在它們交叉路口點處的東北方向建有一個荷花池,荷花池的外圍是一條環(huán)形公路,荷花池中的固定觀景臺位于兩條垂直公路的角平分線上,與環(huán)形公路的交點記作.游客游覽荷花池時,需沿公路先到達環(huán)形公路.為了分流游客,方便游客游覽荷花池,計劃從靠近公路,的環(huán)形公路上選,兩處(,關于直線對稱)修建直達觀景臺的玻璃棧道,.以,所在的直線為軸建立平面直角坐標系,靠近公路,的環(huán)形公路可用曲線近似表示,曲線符合函數(shù)

1)若百米,點的垂直距離為1百米,求玻璃棧道的總長度;

2)若要使得玻璃棧道的總長度最小為百米,求觀景臺的位置.

查看答案和解析>>

同步練習冊答案