【題目】已知曲線C:(5﹣m)x2+(m﹣2)y2=8(m∈R)
(1)若曲線C是焦點在x軸點上的橢圓,求m的取值范圍;
(2)設m=4,曲線c與y軸的交點為A,B(點A位于點B的上方),直線y=kx+4與曲線c交于不同的兩點M、N,直線y=1與直線BM交于點G.求證:A,G,N三點共線.

【答案】
(1)解:原曲線方程可化簡得:

由題意,曲線C是焦點在x軸點上的橢圓可得: ,解得:


(2)證明:由已知直線代入橢圓方程化簡得:(2k2+1)x2+16kx+24=0,△=32(2k2﹣3)>0,解得:

由韋達定理得: ①, ,②

設N(xN,kxN+4),M(xM,kxM+4),G(xG,1),MB方程為: ,則

, =(xN,kxN+2),

欲證A,G,N三點共線,只需證 , 共線

成立,化簡得:(3k+k)xMxN=﹣6(xM+xN

將①②代入可得等式成立,則A,G,N三點共線得證.


【解析】(1)原曲線方程,化為標準方程,利用曲線C是焦點在x軸點上的橢圓可得不等式組,即可求得m的取值范圍;(2)由已知直線代入橢圓方程化簡得:(2k2+1)x2+16kx+24=0,△=32(2k2﹣3),解得: ,設N(xN , kxN+4),M(xM , kxM+4),G(xG , 1),MB方程為: ,則 ,從而可得 , =(xN , kxN+2),欲證A,G,N三點共線,只需證 , 共線,利用韋達定理,可以證明.
【考點精析】通過靈活運用橢圓的標準方程,掌握橢圓標準方程焦點在x軸:,焦點在y軸:即可以解答此題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中, , 平面, .設分別為的中點.

(1)求證:平面∥平面;

(2)求二面角的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對于實數(shù)a和b,定義運算“*”:a*b= 設f(x)=(2x﹣1)*(x﹣1),且關于x的方程為f(x)=m(m∈R)恰有三個互不相等的實數(shù)根x1 , x2 , x3 , 則x1x2x3的取值范圍是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四面體A-BCD中,AD平面BCD,BCCD,CD=2,AD=4.MAD的中點,PBM的中點,點Q在線段AC上,且AQ=3QC.

(I)證明:PQ//平面BCD;

(II)若異面直線PQCD所成的角為,二面角C-BM-D的大小為,求cos的值。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某公司為了變廢為寶,節(jié)約資源,新上了一個從生活垃圾中提煉生物柴油的項目.經(jīng)測算該項目月處理成本(元)與月處理量(噸)之間的函數(shù)關系可以近似地表示為:

,且每處理一噸生活垃圾,可得到能利用的生物柴油價值為200元,若該項目不獲利,政府將給予補貼.

1)當時,判斷該項目能否獲利?如果獲利,求出最大利潤;如果不獲利,則政府每月至少需要補貼多少元才能使該項目不虧損?

2)該項目每月處理量為多少噸時,才能使每噸的平均處理成本最低?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1時,探究函數(shù)的單調性

2若關于的不等式上恒成立,的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】利用秦九韶算法判斷方程x5+x3+x2-1=0[0,2]上是否存在實根.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知f(x)是定義在[﹣2,2]上的奇函數(shù),當x∈(0,2]時,f(x)=2x﹣1,函數(shù)g(x)=x2﹣2x+m.如果對于x1∈[﹣2,2],x2∈[﹣2,2],使得g(x2)=f(x1),則實數(shù)m的取值范圍是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】《中華人民共和國道路交通安全法》第47條的相關規(guī)定:機動車行經(jīng)人行橫道時,應當減速慢行;遇行人正在通過人行橫道,應當停車讓行,俗稱“禮讓斑馬線”,《中華人民共和國道路交通安全法》 第90條規(guī)定:對不禮讓行人的駕駛員處以扣3分,罰款50元的處罰.下表是某市一主干路口監(jiān)控設備所抓拍的5個月內駕駛員不“禮讓斑馬線”行為統(tǒng)計數(shù)據(jù):

月份

1

2

3

4

5

違章駕駛員人數(shù)

120

105

100

90

85

(1)請利用所給數(shù)據(jù)求違章人數(shù)y與月份之間的回歸直線方程+

(2)預測該路口7月份的不“禮讓斑馬線”違章駕駛員人數(shù);

(3)交警從這5個月內通過該路口的駕駛員中隨機抽查了50人,調查駕駛員不“禮讓斑馬線”行為與駕齡的關系,得到如下2列聯(lián)表:

不禮讓斑馬線

禮讓斑馬線

合計

駕齡不超過1年

22

8

30

駕齡1年以上

8

12

20

合計

30

20

50

能否據(jù)此判斷有97.5的把握認為“禮讓斑馬線”行為與駕齡有關?

參考公式及數(shù)據(jù):,.

0.150

0.100

0.050

0.025

0.010

0.005

0.001

k

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(其中n=a+b+c+d)

查看答案和解析>>

同步練習冊答案