A為y軸上異于原點(diǎn)O的定點(diǎn),過動(dòng)點(diǎn)P作x軸的垂線交x軸于點(diǎn)B,動(dòng)點(diǎn)P滿足|
PA
+
PO
|=2|
PB
|
,則點(diǎn)P的軌跡為( 。
A.圓B.橢圓C.雙曲線D.拋物線
設(shè)P(x,y),A(0,a),則
∵動(dòng)點(diǎn)P滿足|
PA
+
PO
|=2|
PB
|

∴|(-x,a-y)+(-x,-y)|=2|(0,-y)|,
∴|(-2x,a-2y)|=|(0,-2y)|,
4x2+(a-2y)2
=|2y|
,
∴4x2+a2-4ay=0,
∴點(diǎn)P的軌跡為拋物線.
故選D.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

橢圓的離心率為,其左焦點(diǎn)到點(diǎn)的距離為
(1) 求橢圓的標(biāo)準(zhǔn)方程;
(2) 若直線與橢圓相交于兩點(diǎn)(不是左右頂點(diǎn)),且以為直徑的圓過橢圓的右頂點(diǎn),求證:直線過定點(diǎn),并求出該定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

方程y=
9-x2
表示的曲線是( 。
A.一條射線B.一個(gè)圓C.兩條射線D.半個(gè)圓

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知定直線l與平面α成60°角,點(diǎn)P是平面α內(nèi)的一動(dòng)點(diǎn),且點(diǎn)P到直線l的距離為3,則動(dòng)點(diǎn)P的軌跡是(  )
A.圓B.橢圓的一部分
C.拋物線的一部分D.橢圓

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,森林的邊界是直線L,兔子和狼分別在L的垂線AC上的點(diǎn)A和點(diǎn)B處(AB=BC=a),現(xiàn)兔子沿線AD(或AE)以速度2v準(zhǔn)備越過L向森林逃跑,同時(shí)狼沿線段BM(點(diǎn)M在AD上)或BN(點(diǎn)N在AE上)以速度v進(jìn)行追擊,若狼比兔子先到或同時(shí)到達(dá)點(diǎn)M(或N)處,狼就會(huì)吃掉兔子.求兔子的所有不幸點(diǎn)(即可能被狼吃掉的地方)組成的區(qū)域的面積S.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知長(zhǎng)為
2
+1
的線段AB的兩個(gè)端點(diǎn)A、B分別在x軸、y軸上滑動(dòng),P是AB上的一點(diǎn),且
AP
=
2
2
PB
,則點(diǎn)P的軌跡方程為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)m∈R,在平面直角坐標(biāo)系中,已知向量
a
=(mx,y+1)
,向量
b
=(x,y-1)
a
b
,動(dòng)點(diǎn)M(x,y)的軌跡為E.求軌跡E的方程,并說明該方程所表示曲線的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)定點(diǎn)M(-3,4),動(dòng)點(diǎn)N在圓x2+y2=4上運(yùn)動(dòng),以O(shè)M、ON為鄰邊作平行四邊形MONP,則點(diǎn)P的軌跡方程為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

△ABC的兩個(gè)頂點(diǎn)坐標(biāo)分別是B(0,-2)和C(0,2),頂點(diǎn)A滿足sinB+sinC=
3
2
sinA

(1)求頂點(diǎn)A的軌跡方程;
(2)若點(diǎn)P(x,y)在(1)軌跡上,求μ=2x-y的最值.

查看答案和解析>>

同步練習(xí)冊(cè)答案