【題目】從6雙不同手套中,任取4只,
(1)恰有1雙配對的取法是多少?
(2)沒有1雙配對的取法是多少?
(3)至少有1雙配對的取法是多少?
【答案】(1)240 (2)240 (3)255
【解析】
(1)取出一雙手套共有種取法;剩余2只在不同的5雙手套中取單只,共有種取法,再根據(jù)分步乘法原理,即可求得答案.
(2)根據(jù)題意,4只手套分別從6雙手套中取單只,共有種取法;
(3)至少有1雙配對,包括恰有1雙配對和2雙配對,根據(jù)分類加法原理,即可求得答案.
解:(1)從6雙不同手套中,取出一雙手套共有種取法;
剩余2只先在5雙中取2雙,再從2雙中各取1只,共有種取法;
所以,恰有1雙配對的取法有種.
(2)根據(jù)題意,先在6雙手套中取4雙,再從取出的4雙中各取1只,
共有種取法;
(3)至少有1雙配對,包括恰有1雙配對和2雙配對;
由(1)可知,恰有1雙配對有種取法;
2雙配對有種取法;
根據(jù)分類加法原理,至少有1雙配對的取法種取法.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C: + =1(a>b>0)經(jīng)過點(0, ),離心率e= .
(Ⅰ)求橢圓C的方程及焦距.
(Ⅱ)橢圓C的左焦點為F1 , 右頂點為A,經(jīng)過點A的直線l與橢圓C的另一交點為P.若點B是直線x=2上異于點A的一個動點,且直線BF1⊥l,問:直線BP是否經(jīng)過定點?若是,求出該定點的坐標(biāo);若不是,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在棱長為1的正方體ABCD﹣A'B'C'D'中,E是AA'的中點,P是三角形BDC'內(nèi)的動點,EP⊥BC',則P的軌跡長為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示是某市2017年4月1日至14日的空氣質(zhì)量指數(shù)趨勢圖,空氣質(zhì)量指數(shù)(AQI)小于100表示空氣質(zhì)量優(yōu)良,空氣質(zhì)量指數(shù)大于200表示空氣重度污染,某同志隨機選擇4月1日至4月12日中的某一天到達(dá)該市,并停留3天. 該同志到達(dá)當(dāng)日空氣質(zhì)量重度污染的概率 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解一種植物的生長情況,抽取一批該植物樣本測量高度(單位:cm),其頻率分布直方圖如圖所示.
(1)求該植物樣本高度的平均數(shù)x和樣本方差s2(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);
(2)假設(shè)該植物的高度Z服從正態(tài)分布N(μ,σ2),其中μ近似為樣本平均數(shù)x,σ2近似為樣本方差s2,利用該正態(tài)分布求P(64.5<Z<96).
(附:=10.5.若Z~N(μ,σ2),則P(μ-σ<Z<μ+σ)=0.682 6,P(μ-2σ<Z<μ+2σ)=0.954 4)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=-x3+x2+(m2-1)x(x∈R),其中m>0.
(1)當(dāng)m=1時,求曲線y=f(x)在點(1,f(1))處的切線斜率;
(2)求函數(shù)的單調(diào)區(qū)間與極值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為(為參數(shù)),在以坐標(biāo)原點O為極點,x軸正半軸為極軸的極坐標(biāo)系中,曲線C2:ρ=2sin θ,直線:θ=(ρ>0),A(2,0).
(1)把C1的普通方程化為極坐標(biāo)方程,并求點A到直線的中距離;
(2)設(shè)直線分別交C1,C2于點P,Q,求△APQ的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某車間為了規(guī)定工時定額,需要確定加工零件所花費的時間,為此作了四次試驗,得到的數(shù)據(jù)如下:
零件的個數(shù)x(個) | 2 | 3 | 4 | 5 |
加工的時間y(小時) | 2.5 | 3 | 4 | 4.5 |
(1)在給定的坐標(biāo)系中畫出表中數(shù)據(jù)的散點圖;
(2)求出y關(guān)于x的線性回歸方程;
(3)試預(yù)測加工10個零件需要多少時間.
參考公式:回歸直線,
其中,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)向量 =(λ+2,λ2﹣ cos2α), =(m, +sinαcosα),其中λ,m,α為實數(shù).
(1)若α= ,求| |的最小值;
(2)若 =2 ,求 的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com