【題目】設(shè)l為曲線C在點處的切線.

1)求l的方程;

2)證明:除切點之外,曲線C在直線l的下方;

【答案】12)證明見解析

【解析】

設(shè)),求函數(shù)的導(dǎo)數(shù),由導(dǎo)數(shù)的幾何意義知 ,即為曲線C在點處的切線的斜率,代入點斜式即可求解;

構(gòu)造函數(shù)),則除切點之外,曲線C在直線l的下方等價于,,求函數(shù)的導(dǎo)數(shù),利用的符號判斷函數(shù)的單調(diào)性,求出時,函數(shù)的最值即可.

設(shè)),則),

從而曲線在點處的切線斜率為,

于是切線方程為,即,

因此直線l的方程為.

證明:令),則

則除切點之外,曲線C在直線l的下方等價于,.

滿足,且,

當(dāng)時,,,從而,于是單調(diào)遞減;

當(dāng)時,,從而,于是單調(diào)遞增.

因此函數(shù)有極小值即最小值.

所以函數(shù)對任意恒成立,

即除切點之外,曲線C在直線l的下方.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某連鎖分店銷售某種商品,每件商品的成本為4元,并且每件商品需向總店交元的管理費,預(yù)計當(dāng)每件商品的售價為元時,一年的銷售量為萬件.

1)求該連鎖分店一年的利潤(萬元)與每件商品的售價的函數(shù)關(guān)系式;

2)當(dāng)每件商品的售價為多少元時,該連鎖分店一年的利潤最大,并求出的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左焦點為,右焦點為,設(shè)M,N是橢圓C上位于x軸上方的兩動點,且直線與直線平行,交于點D

(Ⅰ)求的坐標(biāo);

(Ⅱ)求的最小值;

(Ⅲ)求證:是定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】拋物線的焦點為F,圓,點為拋物線上一動點.已知當(dāng)的面積為.

(I)求拋物線方程;

(II)若,過P做圓C的兩條切線分別交y軸于M,N兩點,求面積的最小值,并求出此時P點坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知如圖,直線是拋物線)和圓C的公切線,切點(在第一象限)分別為PQ.F為拋物線的焦點,切線交拋物線的準(zhǔn)線于A,且.

1)求切線的方程;

2)求拋物線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,圓的參數(shù)方程為為參數(shù)),以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為.

(1)求圓的極坐標(biāo)方程;

(2)已知射線,若與圓交于點(異于點),與直線交于點,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題:

①若將一組樣本數(shù)據(jù)中的每個數(shù)據(jù)都加上同一個常數(shù)后,則樣本的方差不變;

②在殘差圖中,殘差點分布的帶狀區(qū)域的寬度越狹窄,其模型擬合的精度越高;

③設(shè)隨機(jī)變量服從正態(tài)分布,若,則

④對分類變量的隨機(jī)變量的觀測值來說,越小,判斷“有關(guān)系”的把握越大.其中正確的命題序號是(

A.①②B.①②③C.①③④D.②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】足球是世界普及率最高的運動,我國大力發(fā)展校園足球.為了解本地區(qū)足球特色學(xué)校的發(fā)展?fàn)顩r,社會調(diào)查小組得到如下統(tǒng)計數(shù)據(jù):

年份x

2014

2015

2016

2017

2018

足球特色學(xué)校y(百個)

0.30

0.60

1.00

1.40

1.70

1)根據(jù)上表數(shù)據(jù),計算yx的相關(guān)系數(shù)r,并說明yx的線性相關(guān)性強(qiáng)弱.

(已知:,則認(rèn)為yx線性相關(guān)性很強(qiáng);,則認(rèn)為yx線性相關(guān)性一般;,則認(rèn)為yx線性相關(guān)性較):

2)求y關(guān)于x的線性回歸方程,并預(yù)測A地區(qū)2020年足球特色學(xué)校的個數(shù)(精確到個).

參考公式和數(shù)據(jù):,

,

.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個盒子中裝有大量形狀大小一樣但重量不盡相同的小球,從中隨機(jī)抽取個作為樣本,稱出它們的重量(單位:)重量分組區(qū)間為,,,由此得到樣本的重量頻率分布直方圖(如圖).

1)求的值,并根據(jù)樣本數(shù)據(jù),估計盒子中小球重量的眾數(shù)與平均數(shù)(精確到0.01);

2)從盒子中裝的大量小球中,隨機(jī)抽取3個小球,其中重量在內(nèi)的小球個數(shù)為,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊答案