已知雙曲線的一個(gè)焦點(diǎn)為,點(diǎn)位于該雙曲線上,線段的中點(diǎn)坐標(biāo)為,則該雙曲線的標(biāo)準(zhǔn)方程為
A.B.C.D.
B

試題分析:設(shè)出雙曲線的方程,據(jù)雙曲線的焦點(diǎn)坐標(biāo)列出三參數(shù)滿足的一個(gè)等式;利用中點(diǎn)坐標(biāo)公式求出p的坐標(biāo),將其坐標(biāo)代入雙曲線的方程,求出三參數(shù)的另一個(gè)等式,解兩個(gè)方程得到參數(shù)的值。解:據(jù)已知條件中的焦點(diǎn)坐標(biāo)判斷出焦點(diǎn)在x軸上,設(shè)雙曲線的方程為∵一個(gè)焦點(diǎn)為(-,0),∴a2+b2=5①,∵線段PF1的中點(diǎn)坐標(biāo)為(0,2),,∴P的坐標(biāo)為(,4)將其代入雙曲線的方程得 
解①②得a2=1,b2=4,所以雙曲線的方程為故選B
點(diǎn)評:求圓錐曲線常用的方法:待定系數(shù)法、注意雙曲線中三參數(shù)的關(guān)系為:c2=b2+a2
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知橢圓的焦點(diǎn)為,P是橢圓上一動(dòng)點(diǎn),如果延長F1PQ,使,那么動(dòng)點(diǎn)Q的軌跡是(      )
A.橢圓B.雙曲線C.拋物線D.圓

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)F1、F2為雙曲線)的兩個(gè)焦點(diǎn),若F1、F2、P(0,2)是正三角形的三個(gè)頂點(diǎn),則雙曲線離心率是(  )
A.B.2C.D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓C的短軸長等于焦距,橢圓C上的點(diǎn)到右焦點(diǎn)的最短距離為.
(1)求橢圓C的方程;
(2)過點(diǎn)且斜率為(>0)的直線C交于兩點(diǎn),是點(diǎn)關(guān)于軸的對稱點(diǎn),證明:三點(diǎn)共線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知拋物線的焦點(diǎn)為,過焦點(diǎn)且不平行于軸的動(dòng)直線交拋物線于,兩點(diǎn),拋物線在兩點(diǎn)處的切線交于點(diǎn).

(Ⅰ)求證:,,三點(diǎn)的橫坐標(biāo)成等差數(shù)列;
(Ⅱ)設(shè)直線交該拋物線于,兩點(diǎn),求四邊形面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知雙曲線和橢圓有相同的焦點(diǎn),且雙曲線的離心率是橢圓離心率的兩倍,則雙曲線的方程為________________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

橢圓+=1(a>b>0)上一點(diǎn)A關(guān)于原點(diǎn)的對稱點(diǎn)為B, F為其右焦點(diǎn), 若AF⊥BF, 設(shè)∠ABF=, 且∈[,], 則該橢圓離心率的取值范圍為            (       )
A.[,1 ) B.[,]C.[, 1) D.[,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

曲線C的直角坐標(biāo)方程為,以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,則曲線C的極坐標(biāo)方程為 __________;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知是橢圓的左、右焦點(diǎn),O為坐標(biāo)原點(diǎn),點(diǎn)P在橢圓上,線段與y軸的交點(diǎn)M滿足
(Ⅰ) 求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ) 圓O是以為直徑的圓,直線與圓相切,并與橢圓交于不同的兩點(diǎn),當(dāng),且滿足時(shí),求直線的方程。

查看答案和解析>>

同步練習(xí)冊答案