【題目】已知四棱錐P﹣ABCD的底面ABCD是菱形,∠ABC=60°,AB=PC=2,

(1)求證:平面PAD⊥平面ABCD;
(2)求二面角A﹣PC﹣B的余弦值.

【答案】
(1)證明:取AD中點(diǎn)O,連結(jié)PO、CO,

∵PA=PD= ,AB=2,∴△PAD為等腰直角三角形,

∴PO=1,PO⊥AD,

∵AB=BC=2,∠ABC=60°,∴△ABC為等邊三角形,

,又PC=2,

∴PO2+CO2=PC2,∴PO⊥CO,

又AB∩CO=O,AB平面ABCD,CO平面ABCD,

∴PO⊥平面ACD,又PO平面PAB,

∴平面PAB⊥平面ABCD


(2)解:建立以O(shè)為坐標(biāo)原點(diǎn),OC,OD,OP分別為x,y,z軸的空間直角坐標(biāo)系如圖:

則A(0,﹣1,0),C( ,0,0),P(0,0,1),B( ,﹣2,0),

設(shè)平面APC的法向量 =(x,y,z),

,令z= ,則x=1,y=﹣ .即 =(1,﹣

設(shè)平面PCB的法向量 =(x,y,z),

,

令z= ,則x=1,y=0,即 =(1,0,

cos< >= = ,

∵二面角A﹣PC﹣B的是銳二面角,

∴二面角A﹣PC﹣B的余弦值是


【解析】(1)根據(jù)面面垂直的判定定理進(jìn)行證明即可.(2)AP為z軸,建立空間直角坐標(biāo)系,求出平面的法向量利用向量法即可求二面角A﹣PC﹣B的余弦值.
【考點(diǎn)精析】關(guān)于本題考查的平面與平面垂直的判定,需要了解一個(gè)平面過另一個(gè)平面的垂線,則這兩個(gè)平面垂直才能得出正確答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在正方體ABCD﹣A1B1C1D1中,點(diǎn)P在線段AD1上運(yùn)動(dòng),則異面直線CP與BA1所成的角θ的取值范圍是( )

A.0<θ<
B.0<θ≤
C.0≤θ≤
D.0<θ≤

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=
(1)討論f(x)的單調(diào)性;
(2)設(shè)a>0,證明:當(dāng)0<x<a時(shí),f(x+a)<f(a﹣x);
(3)設(shè)x1 , x2是f(x)的兩個(gè)零點(diǎn),證明:f′( )>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知向量 =(3,﹣1),| |= , =﹣5, =x +(1﹣x)
(Ⅰ)若 ,求實(shí)數(shù)x的值;
(Ⅱ)當(dāng)| |取最小值時(shí),求 的夾角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}是等比數(shù)列,且a2013+a2015= dx,則a2014(a2012+2a2014+a2016)的值為(
A.π2
B.2π
C.π
D.4π2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】執(zhí)行如圖所示的程序框圖,則輸出的結(jié)果為(

A.4
B.9
C.7
D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,銳角三角形ABC的內(nèi)心為I,過點(diǎn)A作直線BI的垂線,垂足為H,點(diǎn)E為圓I與邊CA的切點(diǎn).

(1)求證A,I,H,E四點(diǎn)共圓;
(2)若∠C=50°,求∠IEH的度數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知四棱錐P﹣ABCD中,PA⊥平面ABCD,底面ABCD為菱形,∠ABC=60°,E是BC中點(diǎn),M是PD上的中點(diǎn),F(xiàn)是PC上的動(dòng)點(diǎn). (Ⅰ)求證:平面AEF⊥平面PAD
(Ⅱ)直線EM與平面PAD所成角的正切值為 ,當(dāng)F是PC中點(diǎn)時(shí),求二面角C﹣AF﹣E的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已成橢圓 的離心率為 .其右頂點(diǎn)與上頂點(diǎn)的距離為 ,過點(diǎn) 的直線 與橢圓 相交于 兩點(diǎn).
(1)求橢圓 的方程;
(2)設(shè) 中點(diǎn),且 點(diǎn)的坐標(biāo)為 ,當(dāng) 時(shí),求直線 的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案