已知為拋物線的焦點,點為拋物線內(nèi)一定點,點為拋物線上一動點,最小值為8.
(1)求該拋物線的方程;
(2)若直線與拋物線交于兩點,求的面積.

(1).(2)

解析試題分析:(1)設(shè)為點的距離,則由拋物線定義,
所以當(dāng)點為過點且垂直于準(zhǔn)線的直線與拋物線的交點時,
取得最小值,即,解得 
∴拋物線的方程為
(2)設(shè),聯(lián)立,
顯然, 

.  
到直線的距離為,

考點:本題主要考查拋物線的定義,直線與拋物線的位置關(guān)系,點到直線的距離公式,三角形面積公式。
點評:中檔題,涉及“拋物線內(nèi)一定點,點為拋物線上一動點,求最小值”問題,往往利用拋物線定義,“化折為直”。涉及拋物線與直線位置關(guān)系問題,往往利用韋達(dá)定理。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

在平面直角坐標(biāo)系中,點到兩點,的距離之和等于4,設(shè)點的軌跡為
(Ⅰ)寫出的方程;
(Ⅱ)設(shè)直線交于兩點.k為何值時?此時的值是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知雙曲線的離心率且點在雙曲線C上.
(1)求雙曲線C的方程;
(2)記O為坐標(biāo)原點,過點Q (0,2)的直線l與雙曲線C相交于不同的兩點E、F,若△OEF的面積為求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,設(shè)拋物線)的準(zhǔn)線與軸交于,焦點為;以、為焦點,離心率的橢圓與拋物線軸上方的一個交點為.

(1)當(dāng)時,求橢圓的方程;
(2)在(1)的條件下,直線經(jīng)過橢圓的右焦點,與拋物線交于、,如果以線段為直徑作圓,試判斷點與圓的位置關(guān)系,并說明理由;
(3)是否存在實數(shù),使得的邊長是連續(xù)的自然數(shù),若存在,求出這樣的實數(shù);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知兩點,點在以、為焦點的橢圓上,且、構(gòu)成等差數(shù)列.

(1)求橢圓的方程;
(2)如圖7,動直線與橢圓有且僅有一個公共點,點是直線上的兩點,且,. 求四邊形面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,拋物線與x軸交于A、B兩點,與y軸交于點C,連接BC、AC。

(1)求AB和OC的長;
(2)點E從點A出發(fā),沿x軸向點B運動(點E與點A、B不重合)。過點E作直線l平行BC,交AC于點D。設(shè)AE的長為m,△ADE的面積為s,求s關(guān)于m的函數(shù)關(guān)系式,并寫出自變量m的取值范圍;
(3)在(2)的條件下,連接CE,求△CDE面積的最大值;此時,求出以點E為圓心,與BC相切的圓的面積(結(jié)果保留)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題13分)在平面直角坐標(biāo)系中,是拋物線的焦點,是拋物線上位于第一象限內(nèi)的任意一點,過三點的圓的圓心為,點到拋物線的準(zhǔn)線的距離為.
(Ⅰ)求拋物線的方程;
(Ⅱ)是否存在點,使得直線與拋物線相切于點?若存在,求出點的坐標(biāo);若不存在,說明理由;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
已知橢圓中心在原點,焦點在y軸上,焦距為4,離心率為

(I)求橢圓方程;
(II)設(shè)橢圓在y軸的正半軸上的焦點為M,又點A和點B在橢圓上,且M分有向線段所成的比為2,求線段AB所在直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分12分)
如圖,橢圓長軸端點為,為橢圓中心,為橢圓的右焦點,
,.

(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)記橢圓的上頂點為,直線交橢圓于兩點,問:是否存在直線,使點恰為的垂心?若存在,求出直線的方程;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案